CMSC424: Database Design
Introduction

Relational Model

Instructor: Amol Deshpande
amol@cs.umd.edu

Today

» Wrap-up Introduction

» Current Industry Outlook
» Computing Environment
» Relational Model

» No laptop use allowed in the class !!

Some To-Dos

» Sign up for Piazza |

» Set up the computing environment (project0), and make
sure you can run Vagrant+VirtualBox, PostgreSQL,
IPython, etc.

» Upcoming: Reading Homework 1, Project 1: SQL

DBMSs to the Rescue

» Massively successful for highly structured data

> Why ? Structure in the data (if any) can be exploited for ease
of use and efficiency

° How ?

> Two Key Concepts:
- Data Modeling: Allows reasoning about the data at a high level

/N {d) n”

* e.g. “emails” have “sender”, “receiver”, “...

* Once we can describe the data, we can start “querying” it
- Data Abstraction/Independence:

- Layer the system so that the users/applications are insulated from
the low-level details

DBMSs to the Rescue: Data Modeling

» Data modeling

Data model: A collection of concepts that describes how data is represented
and accessed

(¢]

(¢]

Schema: A description of a specific collection of data, using a given data model

(¢]

Some examples of data models that we will see
* Relational, Entity-relationship model, XML. JSON...
* Object-oriented, object-relational, semantic data model, RDF...

(¢]

Why so many models ?

- Tension between descriptive power and ease of use/efficiency
* More powerful models = more data can be represented

* More powerful models = harder to use, to query, and less efficient

DBMSs to the Rescue: Data Abstraction

» Probably the most important purpose of a DBMS

» Goal: Hiding low-level details from the users of the
system

> Alternatively: the principle that

* applications and users should be insulated from how data is
structured and stored

o Also called data independence

» Through use of logical abstractions

Data Abstraction

What data users and View Level
application programs View 1 View 2 View n
see ? "=
What data is stored ? Logical
describe data properties such as Level
data semantics, data relationships

How data is actually stored ? _
e.g. are we using disks ? Which Physical
file system ? Level

Data Abstraction

View Level

View 1

View 2

View n

Logical Data Independence
Protection from logical changes
to the schema

Physical Data Independence —

Protection from changes to the
physical structure of the data

—

Logical
Level

Physical
Level

Data Abstractions: Example

A View Schema

course_info(#registered,...)

View Level

View 1 View 2 . View n
Logical Schema ‘
students(sid, name, major, ...) Logical
courses(cid, name, ...) Oogica
enrolled(sid, cid, ...) Level
Physical Schema
all students in one file ordered by sid Physical

courses split into multiple files by colleges Level

Current Industry Outlook

» Relational DBMSs
> Qracle, IBM DB2, Microsoft SQL Server, Sybase

» Open source alternatives

o MySQL, PostgreSQL, SQLite (primarily embedded), Apache Derby,
BerkeleyDB (mainly a storage engine — no SQL), neo4j (graph data) ...

» Data Warehousing Solutions

o Geared towards very large volumes of data and on analyzing them

> Long list: Teradata, Oracle Exadata, Netezza (based on FPGAs), Aster Data
(founded 2005), Vertica (column-based), Kickfire, Xtremedata (released
2009), Sybase IQ, Greenplum (eBay, Fox Networks use them)

> Usually sell package/services and charge per TB of managed data

> Many (especially recent ones) start with MySQL or PostgreSQL and make
them parallel/faster etc..

Web Scale Data Management, Analysis

» Ongoing debate/issue

> Cloud computing seems to eschew DBMSs in favor of homegrown solutions
> E.g. Google, Facebook, Amazon etc...

» MapReduce: A paradigm for large-scale data analysis
> Hadoop: An open source implementation
o Apache Spark: a better open source implementation

» Why ?
°c DBMSs can’t scale to the needs, not fault-tolerant enough
- These apps don’t need things like transactions, that complicate DBMSs (??7?)
> Mapreduce favors Unix-style programming, doesn’t require SQL

* Try writing SVMs or decision trees in SQL
o Cost

+ Companies like Teradata may charge $100,000 per TB of data managed

Current Industry Outlook

» Bigtable-like
o Called “key-value stores”
o Think highly distributed hash tables
> Allow some transactional capabilities — still evolving area
> Apache Cassandra (Facebook), Hbase (Apache), and many many others

Document Databases (MongoDB, ElasticSearch)
Graph Databases (Neo4j, OrientDB, Titan)

Mapreduce-like
> Hadoop (open source), Pig (@Yahoo), Dryad (@Microsoft), Spark
> Amazon EC2 Framework

> Not really a database — but increasing declarative SQL-like capabilities are being
added (e.g. HIVE at Facebook)

v Vv Vv

>

Much ongoing research in industry and academia

What we will cover...

» We will mainly discuss structured data
> That can be represented in tabular forms (called Relational data)
> We will spend some time on XML
o We will also spend some time on Mapreduce-like stuff

» Still the biggest and most important business (?)
> Well defined problem with really good solutions that work
* Contrast XQuery for XML vs SQL for relational
> Solid technological foundations

» Many of the basic techniques however are directly applicable
o E.g. reliable data storage etc.
o Cf. Many recent attempts to add SQL-like capabilities, transactions to
Mapreduce and related technologies

- E.g., Spark DataFrames

What we will cover...

» representing information
o data modeling

o semantic constraints

» languages and systems for querying data

o complex queries & query semantics

° over massive data sets
» concurrency control for data manipulation
° ensuring transactional semantics

» reliable data storage

° maintain data semantics even if you pull the plug

o fault tolerance

What we will cover...

» representing information
> data modeling: relational models, E/R models, XML/ISON
° semantic constraints: integrity constraints, triggers

» languages and systems for querying data

o complex queries & query semantics: SQL, Spark API

o over massive data sets: indexes, query processing, optimization,
parallelization/cluster processing, streaming, cluster/cloud computing

» concurrency control for data manipulation
° ensuring transactional semantics: ACID properties, distributed consistency

» reliable data storage

° maintain data semantics even if you pull the plug: durability

o fault tolerance: RAID

Summary

» Why study databases ?
> Shift from computation to information
 Always true in corporate domains
* Increasing true for personal and scientific domains
> Need has exploded in recent years
- Data is growing at a very fast rate
> Solving the data management problems is going to be a key

» Database Management Systems provide
> Data abstraction: Key in evolving systems
° GQuarantees about data integrity

* In presence of concurrent access, failures...
> Speed !!

Computing Tools for Next Few Weeks

» git: version control system

» VirtualBox: virtualization software
» Vagrant: make it super-easy to use VirtualBox

» PostgreSQL

» Python and Jupyter Notebooks

» Instabase (optional)

Relational Model and SQL: Outline

» Relational Model (Chapter 2)
o Basics
o Keys
> Relational operations
> Relational algebra basics

» SQL (Chapter 3)
> Setting up the PostgreSQL database
Data Definition (3.2)
Basics (3.3-3.5)
Null values (3.6)
Aggregates (3.7)

(0]

(0]

O

O

Context

» Data Models
o Conceptual representation of the data

» Data Retrieval
> How to ask questions of the database
> How to answer those questions

» Data Storage
> How/where to store data, how to access it
» Data Integrity

> Manage crashes, concurrency
> Manage semantic inconsistencies

Relational Data Model

Introduced by Ted Codd (late 60’s — early 70’s)

e Before = “Network Data Model” (Cobol as DDL, DML)
e Very contentious: Database Wars (Charlie Bachman vs. Ted Codd)

Relational data model contributes:

1. Separation of logical, physical data models (data independence)
2. Declarative query languages
3. Formal semantics

4. Query optimization (key to commercial success)

15t prototypes:

e Ingres 2 CA
e Postgres 2 lllustra = Informix = IBM
e System R = Oracle, DB2

Key Abstraction: Relation

Account =

Terms:

bname | acct no | balance
Downtown A-101 500

Brighton A-201 900

Brighton A-217 500

« Tables (aka: Relations)

Why called Relations?

Closely correspond to mathematical concept of a relation

Relations

bname | acct_ no | balance
Account = | Downtown A-101 500

Brighton A-201 900

Brighton A-217 500

Considered equivalent to...

{ (Downtown, A-101, 500),
(Brighton, A-201, 900),
(Brighton, A-217, 500) }

Relational database semantics defined in
terms of mathematical relations

Relations

bname | acct no | balance
Account = | Downtown A-101 500
Brighton A-201 900
Brighton A-217 500
Considered equivalent to...
{ (Downtown, A-101, 500),
(Brighton, A-201, 900),
(Brighton, A-217, 500)}

Terms:

 Tables (aka: Relations)

« Rows (aka: tuples)

» Columns (aka: attributes)

e Schema (e.g.: Acct Schema = (bname, acct no, balance))

Definitions

Relation Schema (or Schema)
A list of attributes and their domains
E.g. account(account-number, branch-name, balance)

‘ Programming language equivalent: A variable (e.g. X) ‘

Relation Instance
A particular instantiation of a relation with actual values

Will change with time

bname acct_no balance
Downtown A-101 500

Brighton A-201 900

Brighton A-217 500

mrogrammmg language equivalent: Value of a variable

Definitions

Domains of an attribute/column
The set of permitted values
e.g., bname must be String, balance must be a positive real number

We typically assume domains are atomicg, i.e., the values are treated
as indivisible (specifically: you can’t store lists or arrays in them)

Null value
A special value used if the value of an attribute for a row is:

unknown (e.g., don’t know address of a customer)
inapplicable (e.g., “spouse name” attribute for a customer)
withheld/hidden

Different interpretations all captured by a single concept — leads to
major headaches and problems

Tables in a University Database

classroom(building, room_number, capacity)

department(dept_name, building, budget)

course(course_id, title, dept_name, credits)

instructor(ID, name, dept_name, salary)

section(course_id, sec_id, semester, year, building,
room_number, time_slot_id)

teaches(ID, course_id, sec_id, semester, year)

student(ID, name, dept_name, tot_cred)

takes(ld, course_id, sec_id, semester, year, grade)
advisor(s_ID, i ID)

time_slot(time_slot_id, day, start_time, end_time)
prereq(course_id, prereq_id)

Outline

» Overview of modeling
» Relational Model (Chapter 2)

> Basics
o Keys
> Relational operations

> Relational algebra basics

» SQL (Chapter 3)

Setting up the PostgreSQL database
Data Definition (3.2)

Basics (3.3-3.5)

Null values (3.6)

Aggregates (3.7)

(0]

(0]

(0]

O

(@)

Keys

» Let KC R

» Kis a superkey of R if values for K are sufficient to identify a
unique tuple of any possible relation r(R)

o Example: {ID} and {ID,name} are both superkeys of instructor.

» Superkey K is a candidate key if K is minimal (i.e., no subset
of it is a superkey)

o Example: {ID}is a candidate key for Instructor

» One of the candidate keys is selected to be the primary key

> Typically one that is small and immutable (doesn’t change often)

» Primary key typically highlighted (e.g., underlined)

Tables in a University Database

classroom(building, room_number, capacity)
department(dept_name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)

Tables in a University Database

takes(ID, course _id, sec_id, semester, year, grade)

What about ID, course_id?
No. May repeat:

(“1011049”, “CMSC424”, “101”, “Spring”, 2014, D)
(“1011049”, “CMSC424”, “102”, “Fall”, 2015, null)

What about ID, course_id, sec_id?
May repeat:
(“1011049”, “CMSC424”, “101”, “Spring”, 2014, D)
(“1011049”, “CMSC424”, “101”, “Fall”, 2015, null)
What about ID, course _id, sec _id, semester?

Still no: (“1011049”, “CMSC424”, “101”, “Spring”, 2014, D)
(“1011049”, “CMSC424”, “101”, “Spring”, 2015, null)

Tables in a University Database

classroom(building, room_number, capacity)

department(dept name, building, budget)

course(course _id, title, dept_name, credits)

instructor(ID, name, dept_name, salary)

section(course_id, sec_id, semester, year, building,
room_number, time_slot_id)

teaches(ID, course_id, sec_id, semester, year)

student(ID, name, dept_name, tot_cred)

takes(ID, course_id, sec_id, semester, year, grade)
advisor(s_ID, i ID)

time_slot(time_slot_id, day, start_time, end_time)
prereq(course_id, prereq_id)

Keys

» Foreign key: Primary key of a relation that appears in
another relation

{ID} from student appears in takes, advisor

student called referenced relation

takes is the referencing relation

Typically shown by an arrow from referencing to referenced

(@)

(@)

(0]

(0]

» Foreign key constraint: the tuple corresponding to that
primary key must exist

° Imagine:
* Tuple: (‘student101’, ‘CMSC424’) in takes
* But no tuple corresponding to ‘student101’ in student

o Also called referential integrity constraint

Schema Diagram for University Database

s

eqar

advisor

s id
iid

takes student
D » ID <
- . name
course id dept_name
sec_id tot_cred
semester
year
: grade
section course
course_id 3 course_id department
sec_id title dept_name
semester dept_name — > buil ding
year : credits
building time_slot budget
room_no time_slot id
time_slot_id [day
start_time
end_time
prereq instructor
classroom — course id ID
|| building prereq_id name
»| room_no dept_name
capacity teaches salary
ID
|| course id
sec_id
semester

Schema Diagram for the Banking Enterprise

branch

account

branch—name

depositor

customer

account—-number

branch—city
assets

branch-name
balance

customer—name
account—number

customer—mame

customer—street
customer—city

loan

borrower

loan—number

branch-name
amount

customer—mame
loan—number

