CMSC424: Database Design
Relational Model/SQL

Instructor: Amol Deshpande
amol@cs.umd.edu

Today

» Overview of Reading Homework Topics

> Will cover in more detail since first homework, and some of you
don’t have textbook yet

» Relational Model

» No laptop use allowed in the class !!

Some To-Dos

» Sign up for Piazza !

» Set up the computing environment (project0), and make

sure you can run Vagrant+VirtualBox, PostgreSQL,
IPython, etc.

» Upcoming: Reading Homework 2, Project 1: SQL

» Meet the instructor (1%): Stop by to introduce yourself.
Earlier the better.

Topics covered so far

» Why Databases
o Data Modeling
> Importance of abstraction/independence layers

» Relational Model
o Relations, Tuples
° Primary Keys, Foreign Keys
o Referential Integrity Constraints

» Relational Algebra Operations

» SQL
> Data Definition Language: How to create relations, change schemas, etc.
o Data Manipulation Language: Simple single-table queries

Keys

» Let KC R

» Kis a superkey of R if values for K are sufficient to identify a
unique tuple of any possible relation r(R)

o Example: {ID} and {ID,name} are both superkeys of instructor.

» Superkey K is a candidate key if K is minimal (i.e., no subset
of it is a superkey)

o Example: {ID}is a candidate key for Instructor
» One of the candidate keys is selected to be the primary key
o Typically one that is small and immutable (doesn’t change often)

» Primary key typically highlighted (e.g., underlined)

Tables in a University Database

classroom(building, room_number, capacity)
department(dept_name, building, budget)
course(course_id, title, dept_name, credits)
instructor(ID, name, dept_name, salary)

Tables in a University Database

takes(ID, course _id, sec_id, semester, year, grade)

What about ID, course _id?
No. May repeat:

(“1011049”, “CMSC424”, “101”, “Spring”, 2014, D)
(“1011049”, “CMSC424”, “102”, “Fall”, 2015, null)

What about ID, course _id, sec_id?
May repeat:
(“1011049”, “CMSC424”, “101”, “Spring”, 2014, D)
(“1011049”, “CMSC424”, “101”, “Fall”, 2015, null)
What about ID, course _id, sec_id, semester?

Still no: (“1011049”, “CMSC424”, “101”, “Spring”, 2014, D)
(“1011049”, “CMSC424”, “101”, “Spring”, 2015, null)

Tables in a University Database

classroom(building, room_number, capacity)

department(dept name, building, budget)

course(course _id, title, dept_name, credits)

instructor(ID, name, dept_name, salary)

section(course_id, sec_id, semester, year, building,
room_number, time_slot_id)

teaches(ID, course_id, sec_id, semester, year)

student(ID, name, dept_name, tot_cred)

takes(ID, course_id, sec_id, semester, year, grade)
advisor(s_ID, i _ID)

time_slot(time_slot_id, day, start_time, end_time)
prereq(course_id, prereq_id)

Keys

» Foreign key: Primary key of a relation that appears in
another relation
> {ID} from student appears in takes, advisor
o student called referenced relation
° takes is the referencing relation

o Typically shown by an arrow from referencing to referenced

» Foreign key constraint: the tuple corresponding to that
primary key must exist

° Imagine:
* Tuple: (‘student101’, ‘CMSC424’) in takes
* But no tuple corresponding to ‘student101’ in student

o Also called referential integrity constraint

Schema Diagram for University Database

s

>

eqar

advisor

s id
iid

AA

t7kes student
D » ID <
- . name
course_id p
. ept_name
sec_id
tot_cred
semester
year
: grade
section course
course_id < Bl course id department
sec_id < title dept_name
semester —— dept_name | building
year D] credits
building time_slot budget
room_no time_slot_id
time_slot_id [] day
start_time
end_time
prereq instructor
classroom — course id ID
building prereq_id name
»| T0OM_no dept_name
capacity teaches salary
ID
|| course id
sec_id
semester

Schema Diagram for the Banking Enterprise

branch

account

depositor

customer

branch—name

account—number

branch—city
assets

branch—-name

balance

customer—name
account—number

customer—mame

customer—street
customer—city

loan

borrower

loan—number

branch-name
amount

customer—name
loan—number

Examples

» Married(personl_ssn, person2_ssn, date_married, date_divorced)
» Account(cust_ssn, account_number, cust_name, balance, cust_address)

» RA(student_id, project_id, superviser_id, appt_time, appt_start_date,
appt_end_date)

» Person(Name, DOB, Born, Education, Religion, ...)
° Information typically found on Wikipedia Pages

Examples

» Married(personl_ssn, person2_ssn, date_married, date_divorced)

» Account(cust_ssn, account_number, cust_name, balance, cust_address)
o If a single account per customer, then: cust_ssn

o Else: (cust_ssn, account_number)
In the latter case, this is not a good schema because it requires repeating information

» RA(student_id, project_id, superviser_id, appt_time, appt_start_date,
appt_end_date)

o Could be smaller if there are some restrictions — requires some domain knowledge of the
data being stored

» Person(Name, DOB, Born, Education, Religion, ...)
° Information typically found on Wikipedia Pages

o Unclear what could be a primary key here: you could in theory have two people who match
on all of those

Outline

» Overview of modeling
» Relational Model (Chapter 2)

> Basics

o Keys

o Relational operations

o Relational algebra basics

» SQL (Chapter 3)
> Setting up the PostgreSQL database
Data Definition (3.2)
Basics (3.3-3.5)
Null values (3.6)
Aggregates (3.7)

o]

o

o

(0]

Relational Query Languages

» Example schema: R(A, B)

» Practical languages
> SQL
* select A from R where B = 5;
> Datalog (sort of practical)
* q(A) :-R(A, 5)
» Formal languages
o Relational algebra
T (Ops (R))
> Tuple relational calculus
{t:{A}| 3 s:{A,B}(R(A B) As.B=5)}
° Domain relational calculus

* Similar to tuple relational calculus

Relational Operations

» Some of the languages are “procedural” and provide a
set of operations

> Each operation takes one or two relations as input, and
produces a single relation as output

o Examples: SQL, and Relational Algebra

» The “non-procedural” (also called “declarative”)

languages specify the output, but don’t specify the
operations
o Relational calculus

> Datalog (used as an intermediate layer in quite a few systems
today)

Select Operation

Choose a subset of the tuples that satisfies some predicate
Denoted by o in relational algebra

Relation r AlBlclD OA=B D (r)
o|lal|1]7
a | pPp|OS|T7
B 1121 3
B 23|10

Project

Choose a subset of the columns (for all rows)
Denoted by | | in relational algebra

Relation r AlBlclD HA,D () LA|D
o|al| 1|7 a |/

al|p| 5|7 a | 7/

B 12| 3 p |3

B 12310 J/\f{

Relational algebra following “set” semantics — so no duplicates
SQL allows for duplicates — we will cover the formal semantics later

Set Union, Difference

Relationr,s | A | B A
o | 1 o
o | 2 B
B | 1 s

Must be compatible schemas

What about intersection ?
Can be derived
ris=r—(r —s),

rJs:

Cartesian Product

Combine tuples from two relations

If one relation contains N tuples and the other contains M tuples, the
result would contain N*M tuples

The result is rarely useful — almost always you want pairs of tuples that
satisfy some condition

Relationr,s | o | B clpDlE rxst |aAlBlCclIDI|E
a | 1 o 10| a o| 1| a 10| a

5| 2 B |10 a a|1]|p|10] a

p 20| b al1|p|20] Db

' vy | 10| b a| 1]y]10] b

S Bl 2] a|10]| a

B2 | P |10]| a

Bl2]|p|20] b

Bl2]vy]|10]b

Joins

Combine tuples from two relations if the pair of tuples satisfies some
constraint

Equivalent to Cartesian Product followed by a Select

Relationr;s | algl |clID | E TMa=cSlalBlc|D|E
a | 1 o 10| a oa| 1| a|10] a
p 110 | a TG A | e
r vy |10 b

Natural Join

Combine tuples from two relations if the pair of tuples agree on the
common columns (with the same name)

| deptname | building | budget |
Biology Watson 90000
Comp. Sci. | Taylor 100000
Elec. Eng. | Taylor 85000
Finance Painter | 120000
History Painter 50000
Music Packard | 80000
Physics Watson 70000

Figure 2.5 The department relation.

‘ ID ‘ name ‘ dept_name ‘ salary ‘
22222 | Einstein Physics 95000
12121 | Wu Finance 90000
32343 | El Said History 60000
45565 | Katz Comp. Sci. | 75000
98345 | Kim Elec. Eng. | 80000
76766 | Crick Biology 72000
10101 | Srinivasan | Comp. Sci. | 65000
58583 | Califieri History 62000
83821 | Brandt Comp. Sci. | 92000
15151 | Mozart Music 40000
33456 | Gold Physics 87000
76543 | Singh Finance 80000

department > instructor:

‘ ID ‘ name salary ‘ dept_name building budget
10101 | Srinivasan | 65000 | Comp. Sci. | Taylor 100000
12121 | Wu 90000 | Finance Painter 120000
15151 | Mozart 40000 | Music Packard 80000
22222 | Einstein 95000 | Physics Watson 70000
32343 | ElSaid 60000 | History Painter 50000
33456 | Gold 87000 | Physics Watson 70000
45565 | Katz 75000 | Comp. Sci. | Taylor 100000
58583 | Califieri 62000 | History Painter 50000
76543 | Singh 80000 | Finance Painter 120000
76766 | Crick 72000 | Biology Watson 90000
83821 | Brandt 92000 | Comp.Sci. | Taylor 100000
98345 | Kim 80000 | Elec. Eng. Taylor 85000

Figure 2.12 Result of natural join of the instructor and department relations.

Figure 2.4 Unsorted display of the instructor relation. ‘
[—

Outline

» Overview of modeling
» Relational Model (Chapter 2)

> Basics
o Keys
> Relational operations

> Relational algebra basics

» SQL (Chapter 3)

Basic Data Definition (3.2)

Setting up the PostgreSQL database
Basic Queries (3.3-3.5)

Null values (3.6)

Aggregates (3.7)

(0]

o]

o

o

(0]

History

» IBM Sequel language developed as part of System R project at the
IBM San Jose Research Laboratory

» Renamed Structured Query Language (SQL)

» ANSI and ISO standard SQL.:
- SQL-86, SQL-89, SQL-92
- SQL:1999, SQL:2003, SQL:2008

» Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary
features.
> Not all examples here may work on your particular system.

» Several alternative syntaxes to write the same queries

Different Types of Constructs

» Data definition language (DDL): Defining/modifying schemas
° Integrity constraints: Specifying conditions the data must satisfy
> View definition: Defining views over data
o Authorization: Who can access what

» Data-manipulation language (DML): Insert/delete/update
tuples, queries

» Transaction control:

» Embedded SQL: Calling SQL from within programming
languages

» Creating indexes, Query Optimization control...

Data Definition Language

The SQL data-definition language (DDL) allows the
specification of information about relations, including:

» The schema for each relation.

» The domain of values associated with each attribute.

» Integrity constraints

» Also: other information such as
> The set of indices to be maintained for each relations.
o Security and authorization information for each relation.
- The physical storage structure of each relation on disk.

SQL Constructs: Data Definition Language

» CREATE TABLE <name> (<field> <domain>, ...)

create table department

(dept_name varchar(20),

building varchar(15),

budget numeric(12,2) check (budget > 0),
primary key (dept_name)

);

create table instructor (

ID char(5),

name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),

primary key (/D),
foreign key (dept_name) references department

SQL Constructs: Data Definition Language

» CREATE TABLE <name> (<field> <domain>, ...)

create table department
(dept_name varchar(20) primary key,
building varchar(15),
budget numeric(12,2) check (budget > 0)

);

create table instructor (
ID char(5) primary key,

name varchar(20) not null,

d_name varchar(20),

salary numeric(8,2),

foreign key (d_name) references department

SQL Constructs: Data Definition Language

» drop table student
» delete from student
o Keeps the empty table around

» alter table
o alter table student add address varchar(50);
° alter table student drop tot_cred;

SQL Constructs: Insert/Delete/Update Tuples

» INSERT INTO <name> (<field names>) VALUES (<field values>)

insert into instructor values (102117, Smith’, " Biology’ , 66000);
insert into instructor (name, ID) values (‘Smith’, ‘102117);

-- NULL for other two
insert into instructor (ID) values (‘10211°);

-- FAIL

» DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;

o Syntax is fine, but this command may be rejected because of
referential integrity constraints.

SQL Constructs: Insert/Delete/Update Tuples

» DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;

dept_name | building | budget b name i) |
: 10101 | Srinivasan | 65000 | Comp. Sci.
Biology | Watson | 90000 12121 | Wu 90000 | Finance
Comp. Sci. | Taylor | 100000 15151 | Mozart 40000 | Music
Elec. Eng. | Taylor 85000 22222 | Finstein 95000 _| Physics
Finance _Painter | 120000 < 32343 | ElSaid 60000 | History >
Mistory Painter 50000 | = 33456 | Gord 87000 | Physics
Music Packard | 80000 45565 __Katz 22000 _|_Comp. Sci.
. < 758583 | Califieri 62000 | History
Physics Watson 70000 5 s B
76766 | Crick 72000 | Biology
. - 83821 | Brandt 92000 | Comp. Sci.
Figure 2.5 The department relation. 08345 | Kim 80000 | Elec. Eng.
We can choose what happens: Instructor relation

(1) Reject the delete, or
(2) Delete the rows in Instructor (may be a cascade), or
3) Set the appropriate values in Instructor to NULL

RN .
AN
AN

SQL Constructs: Insert/Delete/Update Tuples

» DELETE FROM <name> WHERE <condition>
delete from department where budget < 80000;

create table instructor

(ID varchar(5),

name varchar(20) not null,

dept_name varchar(20),

salary numeric(8,2) check (salary > 29000),

primqry key (ID),

f = ferences department
te set null

D

We can choose what happens:

(1) Reject the delete (nothing), or

(2) Delete the rows in Instructor (on delete cascade), or

(3) Set the appropriate values in Instructor to NULL (on delete set null)

SQL Constructs: Insert/Delete/Update Tuples

» DELETE FROM <name> WHERE <condition>
> Delete all classrooms with capacity below average
delete from classroom where capacity <
(select avg(capacity) from classroom);

- Problem: as we delete tuples, the average capacity changes

> Solution used in SQL.:
- First, compute avg capacity and find all tuples to delete

- Next, delete all tuples found above (without recomputing avg or
retesting the tuples)

- E.g. consider the query: delete the smallest classroom

“““““““““

SQL Constructs: Insert/Delete/Update Tuples

» UPDATE <name> SET <field name> = <value> WHERE <condition>

> Increase all salaries’s over $100,000 by 6%, all other receive 5%.
> Write two update statements:

update instructor

set salary = salary * 1.06
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary = 10000;

o The order is important
> Can be done better using the case statement

SQL Constructs: Insert/Delete/Update Tuples

» UPDATE <name> SET <field name> = <value> WHERE <condition>

> Increase all salaries’s over $100,000 by 6%, all other receive 5%.
o Can be done better using the case statement

update instructor
set salary =

case
when salary > 100000
then salary * 1.06

when salary <= 100000
then salary * 1.05

end;

