
Instructor:	
 Amol	
 Deshpande	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 amol@cs.umd.edu	

}  Why	
 Databases	

◦  Data	
 Modeling	

◦  Importance	
 of	
 abstrac=on/independence	
 layers	

}  Rela=onal	
 Model	

◦  Rela=ons,	
 Tuples	

◦  Primary	
 Keys,	
 Foreign	
 Keys	

◦  Referen=al	
 Integrity	
 Constraints	

}  Rela=onal	
 Algebra	
 Opera=ons	

}  SQL	

◦  Data	
 Defini=on	
 Language:	
 How	
 to	
 create	
 rela=ons,	
 change	
 schemas,	
 etc.	

◦  Data	
 Manipula=on	
 Language:	
 Simple	
 single-­‐table	
 queries	

}  Overview	
 of	
 modeling	

}  Rela=onal	
 Model	
 (Chapter	
 2)	

◦  Basics	
 	

◦  Keys	

◦  Rela=onal	
 opera=ons	

◦  Rela=onal	
 algebra	
 basics	

}  SQL	
 (Chapter	
 3)	

◦  Basic	
 Data	
 Defini=on	
 (3.2)	

◦  SeUng	
 up	
 the	
 PostgreSQL	
 database	

◦  Basic	
 Queries	
 (3.3-­‐3.5)	

◦  Null	
 values	
 (3.6)	

◦  Aggregates	
 (3.7)	

select A1, A2, ..., An  
from r1, r2, ..., rm  
where P 

Attributes or expressions

Relations (or queries returning tables)

Predicates

Find the names of all instructors: 
select name  
from instructor

Apply some filters (predicates):
select name  
from instructor
where salary > 80000 and dept_name = ‘Finance’;

Remove duplicates: 
select distinct name  
from instructor

Order the output:
select distinct name  
from instructor
order by name asc

Find the names of all instructors: 
select name  
from instructor

Select all attributes: 
select *  
from instructor

Expressions in the select clause:
select name, salary < 100000 
from instructor

More complex filters:
select name  
from instructor
where (dept_name != ‘Finance’ and salary > 75000)
or (dept_name = ‘Finance’ and salary > 85000);

A filter with a subquery:
select name  
from instructor
where dept_name in (select dept_name from
 department where budget < 100000);

Find the names of all instructors: 
select name  
from instructor

Renaming tables or output column names: 
select i.name, i.salary * 2 as double_salary  
from instructor i
where i.salary < 80000 and i.name like ‘%g_’;

More complex expressions:
select concat(name, concat(‘, ’, dept_name))
from instructor;

Careful with NULLs:
select name  
from instructor
where salary < 100000 or salary >= 100000;

Wouldn’t return the instructor with NULL salary (if any)

Cartesian product:
select *  
from instructor, department

Use predicates to only select “matching” pairs: 
select *  
from instructor i, department d
where i.dept_name = d.dept_name;

Identical (in this case) to using a natural join:
select *  
from instructor natural join department;

Natural join does an equality on common attributes –
doesn’t work here:
select *
from instructor natural join advisor;

Instead can use “on” construct (or where clause as above):
select *
from instructor join advisor on (i_id = id);

3-Table Query to get a list of instructor-teaches-course information:

select i.name as instructor_name, c.title as course_name 
from instructor i, course c, teaches
where i.ID = teaches.ID and c.course_id = teaches.course_id;

Beware of unintended common names (happens often)
You may think the following query has the same result as above – it doesn’t

select name, title 
from instructor natural join course natural join teaches;

I prefer avoiding “natural joins” for that reason
Note: On the small dataset, the above two have
the same answer, but not on the large dataset.
Large dataset has cases where an instructor
teaches a course from a different department.

Find courses that ran in Fall 2009 or Spring 2010
(select course_id from section where semester = ‘Fall’ and year = 2009) 
 union 
(select course_id from section where semester = ‘Spring’ and year = 2010);

In both:
(select course_id from section where semester = ‘Fall’ and year = 2009) 
 intersect 
(select course_id from section where semester = ‘Spring’ and year = 2010);

In Fall 2009, but not in Spring 2010:
(select course_id from section where semester = ‘Fall’ and year = 2009) 
 except 
(select course_id from section where semester = ‘Spring’ and year = 2010);

Union/Intersection/Except eliminate duplicates in the answer (the other SQL
commands don’t) (e.g., try ‘select dept_name from instructor’).

Can use “union all” to retain duplicates.

NOTE: The duplicates are retained in a systematic fashion (for all SQL operations)

Suppose a tuple occurs m times in r and n times in s, then, it occurs:
●  m + n times in r union all s
●  min(m,n) times in r intersect all s
●  max(0, m – n) times in r except all s

Union/Intersection/Except eliminate duplicates in the answer (the other SQL
commands don’t) (e.g., try ‘select dept_name from instructor’).

Can use “union all” to retain duplicates.

NOTE: The duplicates are retained in a systematic fashion (for all SQL operations)

Suppose a tuple occurs m times in r and n times in s, then, it occurs:
●  m + n times in r union all s
●  min(m,n) times in r intersect all s
●  max(0, m – n) times in r except all s

}  Overview	
 of	
 modeling	

}  Rela=onal	
 Model	
 (Chapter	
 2)	

◦  Basics	
 	

◦  Keys	

◦  Rela=onal	
 opera=ons	

◦  Rela=onal	
 algebra	
 basics	

}  SQL	
 (Chapter	
 3)	

◦  Basic	
 Data	
 Defini=on	
 (3.2)	

◦  SeUng	
 up	
 the	
 PostgreSQL	
 database	

◦  Basic	
 Queries	
 (3.3-­‐3.5)	

◦  Null	
 values	
 (3.6)	

◦  Aggregates	
 (3.7)	

The	
 “dirty	
 li[le	
 secret”	
 of	
 SQL	

(major headache for query optimization)

Can be a value of any attribute
e.g: branch =

What does this mean?
(unknown) We don’t know Waltham’s assets?
(inapplicable) Waltham has a special kind of account without
assets
(withheld) We are not allowed to know

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M

Mianus Horseneck .4M

Waltham Boston NULL

Arithme=c	
 Opera=ons	
 with	
 Null

n + NULL = NULL (similarly for all arithmetic ops: +, -, *, /, mod, …)

SELECT bname, assets * 2 as a2
FROM branch

e.g: branch =

=

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M

Mianus Horseneck .4M

Waltham Boston NULL

bname a2
Downtown 18M

Perry 3.4M

Mianus .8M

Waltham NULL

Boolean	
 Opera=ons	
 with	
 Null
n < NULL = UNKNOWN (similarly for all boolean ops: >, <=, >=, <>, =, …)

e.g: branch =

= SELECT *
FROM branch
WHERE assets = NULL

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M

Mianus Horseneck .4M

Waltham Boston NULL

bname bcity assets

Counter-intuitive: select * from movies
 where length >= 120 or length <= 120

Counter-intuitive: NULL * 0 = NULL

Boolean	
 Opera=ons	
 with	
 Null
n < NULL = UNKNOWN (similarly for all boolean ops: >, <=, >=, <>, =, …)

e.g: branch =

= SELECT *
FROM branch
WHERE assets IS NULL

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M

Mianus Horseneck .4M

Waltham Boston NULL

bname bcity assets
Waltham Boston NULL

Boolean	
 Opera=ons	
 with	
 Unknown

Can write:
 SELECT …

 FROM …

 WHERE booleanexp IS UNKNOWN

Intuition: substitute each of TRUE, FALSE for unknown. If
different answer results, results is unknown

n < NULL = UNKNOWN (similarly for all boolean ops: >, <=, >=, <>, =, …)

FALSE OR UNKNOWN = UNKNOWN

TRUE AND UNKNOWN = UNKNOWN

UNKNOWN OR UNKNOWN = UNKNOWN

UNKNOWN AND UNKNOWN = UNKNOWN

NOT (UNKNOWN) = UNKNOWN

UNKNOWN tuples are not included in final result

}  Overview	
 of	
 modeling	

}  Rela=onal	
 Model	
 (Chapter	
 2)	

◦  Basics	
 	

◦  Keys	

◦  Rela=onal	
 opera=ons	

◦  Rela=onal	
 algebra	
 basics	

}  SQL	
 (Chapter	
 3)	

◦  Basic	
 Data	
 Defini=on	
 (3.2)	

◦  SeUng	
 up	
 the	
 PostgreSQL	
 database	

◦  Basic	
 Queries	
 (3.3-­‐3.5)	

◦  Null	
 values	
 (3.6)	

◦  Aggregates	
 (3.7)	

Find the average salary of instructors
in the Computer Science
select avg(salary) 
from instructor
where dept_name = ‘Comp. Sci’;

Other common aggregates:
max, min, sum, count, stdev, …

select count (distinct ID) 
from teaches 
where semester = ’Spring’ and year = 2010

Can specify aggregates in any query.

Find max salary over instructors teaching in S’10.
select max(salary) 
from teaches natural join instructor  
where semester = ’Spring’ and year = 2010;

Aggregate result can be used as a scalar.
Find instructors with max salary:
select *  
from instructor  
where salary = (select max(salary) from instructor);

Aggregate result can be used as a scalar.
Find instructors with max salary:
select *  
from instructor  
where salary = (select max(salary) from instructor);

Following doesn’t work:

select *  
from instructor  
where salary = max(salary);

select name, max(salary)
from instructor  
where salary = max(salary);

Split the tuples into groups, and computer the aggregate for each group
select dept_name, avg (salary) 
from instructor 
group by dept_name;

Attributes in the select clause must be aggregates, or must appear in the
group by clause. Following wouldn’t work
select dept_name, ID, avg (salary) 
from instructor 
group by dept_name;

“having” can be used to select only some of the groups.

select dept_name, avg (salary) 
from instructor 
group by dept_name
having avg(salary) > 42000;

Given	

branch =

Aggregate Operations
SELECT SUM (assets) =

FROM branch

NULL is ignored for SUM
Same for AVG (3.7M), MIN (0.4M),
MAX (9M)
Also for COUNT(assets) -- returns 3

SUM
11.1 M

COUNT
4

bname bcity assets
Downtown Boston 9M

Perry Horseneck 1.7M

Mianus Horseneck .4M

Waltham Boston NULL

But COUNT (*) returns

Given	

branch =

SELECT SUM (assets) =

FROM branch

•  Same as AVG, MIN, MAX
•  But COUNT (assets) returns

SUM
NULL

COUNT

0

bname bcity assets

}  Rela=onal	
 Model	
 (Chapter	
 2)	

◦  Basics	
 	

◦  Keys	

◦  Rela=onal	
 opera=ons	

◦  Rela=onal	
 algebra	
 basics	

}  SQL	
 (Chapter	
 3)	

◦  SeUng	
 up	
 the	
 PostgreSQL	
 database	

◦  Data	
 Defini=on	
 (3.2)	

◦  Basics	
 (3.3-­‐3.5)	

◦  Null	
 values	
 (3.6)	

◦  Aggregates	
 (3.7)	

