CMSC424: Database Design
Relational Model/SQL

Instructor: Amol Deshpande
amol@cs.umd.edu

Topics covered so far

» Why Databases
o Data Modeling
> Importance of abstraction/independence layers

» Relational Model
o Relations, Tuples
° Primary Keys, Foreign Keys
o Referential Integrity Constraints

» Relational Algebra Operations

» SQL
> Data Definition Language: How to create relations, change schemas, etc.
o Data Manipulation Language: Simple single-table queries

Outline

» Overview of modeling

» Relational Model (Chapter 2)
> Basics
o Keys
> Relational operations

> Relational algebra basics

» SQL (Chapter 3)

Basic Data Definition (3.2)

Setting up the PostgreSQL database
Basic Queries (3.3-3.5)

Null values (3.6)

Aggregates (3.7)

(0]

(0]

(0]

O

(@)

Schema Diagram for University Database

s

eqar

advisor

s id
iid

takes student
D » ID <
- . name
course id dept_name
sec_id tot_cred
semester
year
: grade
section course
course_id 3 course_id department
sec_id title dept_name
semester dept_name > buil ding
year : credits
room_no time_slot id
time_slot_id [day
start_time
end_time
prereq instructor
classroom — course_id ID
|| building prereq_id name
»| room_no dept_name
capacity teaches salary
ID
|| course id
sec_id
semester

Basic Query Structure

: — Attributes or expressions
select A, A,, ..., A,

from Iy, Ioy ..., I, 4= Relations (or queries returning tables)
where P ¢ Predicates

Remove duplicates:
select distinct name

from instructor
/ Order the output:

Find the names of all instructors: select distinct name
select name M from instructor
from instructor order by name asc

\ Apply some filters (predicates):

select name
from instructor
where salary > 80000 and dept_name = ‘Finance’;

Basic Query Constructs

Select all attributes:
select *

from instructor _ _
Expressions in the select clause:

M select name, salary < 100000

Find the names of alfinstructors: from instructor
select name

from instructor More complex filters:
select name

from instructor
where (dept_name != ‘Finance’ and salary > 75000)
or (dept_name = ‘Finance’ and salary > 85000);

A filter with a subquery:

select name

from instructor

where dept_name in (select dept_name from
department where budget < 100000);

\\\\\\M\

Basic Query Constructs

Renaming tables or output column names:
select i.name, i.salary * 2 as double_salary
from instructor i

where i.salary < 80000 and i.name like ‘%g_",

Find the names of alf instructors:
select name

from instructor More complex expressions:
select concat(name, concat(’, ’, dept_name))

from instructor;

Careful with NULLSs:

select name

from instructor

where salary < 100000 or salary >= 100000;

Wouldn’t return the instructor with NULL salary (if any)

Multi-table Queries

Use predicates to only select “matching” pairs:
select *
from instructor i, department d

f where i.dept_name = d.dept_name;

Cartesian product: |dentical (in this case) to using a natural join:
select * = select”
from instructor, department from instructor natural join department;

N Natural join does an equality on common attributes —
doesn’t work here:
select *
from instructor natural join aagvisor;

Instead can use “on” construct (or where clause as above):
select *
from instructor join advisoron (i_id = id);

Multi-table Queries

3-Table Query to get a list of instructor-teaches-course information:

select i.name as instructor_name, c.title as course _name

from instructor i, course c, teaches
where i.ID = teaches.ID and c.course_id = teaches.course_id;

Beware of unintended common names (happens often)
You may think the following query has the same result as above — it doesn’t

select name, title
from instructor natural join course natural join teaches;

| prefer avoiding “natural joins” for that reason

Note: On the small dataset, the above two have
the same answer, but not on the large dataset.
Large dataset has cases where an instructor
teaches a course from a different department.

Set operations

Find courses that ran in Fall 2009 or Spring 2010

(select course_id from section where semester = ‘Fall’ and year = 2009)
union
(select course_id from section where semester = ‘Spring’ and year =2010);

In both:

(select course_id from section where semester = ‘Fall’ and year = 2009)
intersect
(select course_id from section where semester = ‘Spring’ and year =2010);

In Fall 2009, but not in Spring 2010:

(select course_id from section where semester = ‘Fall’ and year = 2009)
except
(select course_id from section where semester = ‘Spring’ and year = 2010);

Set operations: Duplicates

Union/Intersection/Except eliminate duplicates in the answer (the other SQL
commands don't) (e.g., try ‘select dept_name from instructor’).

Can use “union all”’ to retain duplicates.
NOTE: The duplicates are retained in a systematic fashion (for all SQL operations)

Suppose a tuple occurs mtimes in rand ntimes in s, then, it occurs:
m + ntimes in runion all s
min(m,n) times in r intersect all s
max(0, m — n) times in rexcept all s

Set operations: Duplicates

Union/Intersection/Except eliminate duplicates in the answer (the other SQL
commands don't) (e.g., try ‘select dept_name from instructor’).

Can use “union all”’ to retain duplicates.
NOTE: The duplicates are retained in a systematic fashion (for all SQL operations)

Suppose a tuple occurs mtimes in rand ntimes in s, then, it occurs:
m + ntimes in runion all s
min(m,n) times in r intersect all s
max(0, m — n) times in rexcept all s

Outline

» Overview of modeling

» Relational Model (Chapter 2)
> Basics
o Keys
> Relational operations

> Relational algebra basics

» SQL (Chapter 3)

Basic Data Definition (3.2)

Setting up the PostgreSQL database
Basic Queries (3.3-3.5)

Null values (3.6)

Aggregates (3.7)

(0]

(0]

(0]

O

(@)

SQL: Nulls

The “dirty little secret” of SQL

(major headache for query optimization)

Can be a value of any attribute

e.g: branch = bname bcity assets
Downtown Boston oM
Perry Horseneck 1.7M
Mianus Horseneck 4AM
Waltham Boston NULL

What does this mean?

(unknown) We don’t know Waltham’s assets?

(inaplplicable) Waltham has a special kind of account without
assets

(withheld) We are not allowed to know

SQL: Nulls

Arithmetic Operations with Nul1l

n + NULL = NULL (similarly for all arithmetic ops: +, -, *, /, mod,
e.g: branch = .
bname bcity assets
Downtown Boston oM
Perry Horseneck 1.7M
Mianus Horseneck AM
Waltham Boston NULL
SELECT bname, assets * 2 as aZ2 bname az
FROM branch = Downtown 18M
Perry 3.4M
Mianus .8M

Waltham NULL

SQL: Nulls

Boolean Operations with Null

n < NULL = UNKNOWN (similarly for all boolean ops: >, <=, >=, <>, =, ...)

bname bcity assets
e.g: branch = —
Downtown Boston oM
Perry Horseneck 1.7M
Mianus Horseneck AM
Waltham Boston NULL
*
SELECT - bname bcity assets

FROM branch
WHERE assets = NULL

Counter-intuitive: NULL * 0 = NULL

Counter-intuitive: select * from movies
where length >= 120 or length <= 120

SQL: Nulls

Boolean Operations with Null

n < NULL = UNKNOWN

e.g: branch =

SELECT *
FROM branch
WHERE assets IS NULL

(similarly for all boolean ops: >, <=, >=, <>, =
bname bcity assets
Downtown Boston oM
Perry Horseneck 1.7M
Mianus Horseneck AM
Waltham Boston NULL
bname bcity assets
Waltham Boston NULL

SQL: Unknown

Boolean Operations with Unknown

n < NULL = UNKNOWN (similarly for all boolean ops: >, <=, >=, <>, =, ...)

FALSE OR UNKNOWN = UNKNOWN
TRUE AND UNKNOWN = UNKNOWN

Intuition: substitute each of TRUE, FALSE for unknown. If
different answer results, results 1s unknown

Can write:
UNKNOWN OR UNKNOWN = UNKNOWN
SELECT ..
UNKNOWN AND UNKNOWN = UNKNOWN
FROM ..

NOT (UNKNOWN) = UNKNOWN
WHERE booleanexp IS UNKNOWN

UNKNOWN tuples are not included in final result

Outline

» Overview of modeling

» Relational Model (Chapter 2)
> Basics
o Keys
> Relational operations

> Relational algebra basics

» SQL (Chapter 3)

Basic Data Definition (3.2)

Setting up the PostgreSQL database
Basic Queries (3.3-3.5)

Null values (3.6)

Aggregates (3.7)

(0]

(0]

(0]

O

(@)

Other common aggregates:

Aggregates max, min, sum, count, stdev, ...

select count (distinct /D)
from teaches
where semester =" Spring’ and year = 2010

Find the average salary of instructors

in the Computer Science Can specify aggregates in any query.

select avg(salary)

from instructor . Find max salary over instructors teaching in S’10
where dept_name = ‘Comp. Sci’; select max(salary)

from teaches natural join instructor
where semester =" Spring’ and year = 2010;

Aggregate result can be used as a scalar.
Find instructors with max salary:

select *

from instructor

where salary = (select max(salary) from instructor);
L\\ .

Aggregates

Aggregate result can be used as a scalar.

Find instructors with max salary:

select *

from instructor

where salary = (select max(salary) from instructor);

Following doesn’t work:

select *
from instructor
where salary = max(salary);

select name, max(salary)
from instructor
where salary = max(salary);

N

Aggregates: Group By

Split the tuples into groups, and computer the aggregate for each group
select dept_name, avg (salary)

from instructor

group by dept_name;

ID | name dept_name | salary
76766 | Crick Biology 72000
45565 | Katz Comp. Sci. | 75000
10101 | Srinivasan | Comp. Sci. | 65000 dept_name avg_salary
83821 | Brandt Comp. Sci. | 92000 Biology 72000
12121 | Wu Finance 90000

. , Elec. Eng. | 80000
76543 | Singh Finance 80000 :

: : Finance 85000

32343 | El Said History 60000 Hist 61000
58583 | Califieri | History | 62000 1story
15151 | Mozart Music 40000 MHSI,C 20000
33456 | Gold Physics | 87000 Physics 91000
22222 |Einstein Physics 95000

Aggregates: Group By

Attributes in the select clause must be aggregates, or must appear in the
group by clause. Following wouldn’t work

select dept_name, ID, avg (salary)
from instructor
group by dept_name;

“having” can be used to select only some of the groups.

select dept_name, avg (salary)
from instructor

group by dept name

having avg(salary) > 42000;

Aggregates and NULLs

Given

branch =

Aggregate Operations

SELECT SUM
FROM branch

bname bcity assets
Downtown Boston oM
Perry Horseneck 1.7M
Mianus Horseneck 4AM
Waltham Boston NULL
(assets) = SUM
1.1 M

NULL is ignored for SUM
Same for AVG (3.7M), MIN (0.4M),

MAX (9M)

Also for COUNT (assets) -- returns 3

But COUNT (*) returns

COUNT
4

Aggregates and NULLs

Given

branch = bname

bcity

assets

SELECT SUM (assets) =
FROM branch

o Same as AVG, MIN, MAX

e But COUNT (assets) returns

)
C
=

NULL

COUNT

Summary

» Relational Model (Chapter 2)
> Basics
o Keys
> Relational operations
> Relational algebra basics

» SQL (Chapter 3)

Setting up the PostgreSQL database
Data Definition (3.2)

Basics (3.3-3.5)

Null values (3.6)

Aggregates (3.7)

(0]

(0]

(0]

(0]

O

