CMSC424: Database Design
Entity-Relationship Model

Instructor: Amol Deshpande
amol@cs.umd.edu

Outline

» Database Design Process
» Entity-relationship Model (E/R model)

» Converting from E/R to Relational

» Extra slides

Database Design Process

» Why?
> Difficult to directly create schemas for complex domains
> Need significant back-and-forth between the developer and the
users
» Common Steps:

o |nitial design: Characterize the data needs of the users, including
functional requirements (what types of queries/transactions)

(0]

Choose a data model appropriate for the data needs
Translate the requirements into a “conceptual schema”

Logical Design Step: Convert to the logical schema, typically
relational

Physical Design Steps: Decide physical layout of the database
» Normalization (covered later) also deals with this issue

(@)

(0]

(0]

Outline

» Database Design Process
» Entity-relationship Model (E/R model)

» Converting from E/R to Relational

» Extra slides

Entity-Relationship Model

» Conceptual schema often done in the E/R Model
» Why?

° Why not just use the relational model directly?

o Relational model too impoverished

* Hard to understand what’s going on

* No distinction between different types of entities or relationships
- Everything is a table
* Too much detail

» E/R models have an associated diagrammatic representation
o Easier to work with in the initial design phases

» At the end: easy to convert to a relational schema (almost
mechanical)

takes student
D » ID <
- v name
course id dept_name
sec_id tot_cred
semester
year
: grade
section course
b course_id t course_id department advisor
-p| SEC L id title dept_name s id
> semester dept_name —> building iid
—>| year : credits —
—| building time_slot budget
room_no time_slot id
time_slot_id [day
start_time
end_time
prereq instructor
classroom — course id D
|| building prereq_id name
»| room _no dept_name
capacity teaches salary
ID
|| course id
sec_id
semester
year

- Key entities and “relationships” between them, all mixed up.
- Attributes appearing multiple times
- Complicated foreign keys

Relationships

department
course_dept o e between them
VS- building
budget
student
advisor ID
name
tot_cred
Entltles K / _____ =
section
course sec_id. time_slot
course id semester sec_time_slot time_slot_id
tztle' year { day
credits start_time
end_time
prereq ’ !
course_id prereq_id
classroom
building

room_number
capacity

Example 1

» Let’s consider a application like AirBnB

» So we have:
° Properties
° OQwners

o Customers

o Stays

TV Channel

- T G

Recursive Relationships

» Sometimes a relationship associates an entity set to
itself

» Need “roles” to distinguish

course :
course_id

course id
e | g <

Weak Entity Sets

» An entity set without enough attributes to have a
primary key

» E.g. Section Entity

» Still need to be able to distinguish between weak
entities

o Called “discriminator attributes”: dashed underline

course section
cgurse 1d sec_id
title semester
credits year

Participation Constraints

» Records the information that any entity in an entity set
must participate in at least one relationship of that type

course section
cgurse 1d sec_id
fitle semester
credits year

Specialization/Generalization

Similar to object-oriented programming: allows inheritance etc.

Disjoint vs Overlapping:
No person can be both employee and student
Partial vs Total
There may be “Persons” who are neither
employee or student

Different ways to convert to a Relational schema

person

ID
name
address

/N

based on the above issues

employee

salary

‘ﬁ

imstructor

student

tot credits

rank

secretary

hours_per_week

Aggregation
» No relationships allowed between relationships

» Suppose we want to record evaluations of a student
by a guide on a project

project

instructor /\ student

proj_guide

>

evaluation

Thoughts...

» Nothing about actual data

> How is it stored ?

» No talk about the query languages
> How do we access the data ?

» Semantic vs Syntactic Data Models
> Remember: E/R Model is used for conceptual modeling
° Many conceptual models have the same properties

» They are much more about representing the knowledge
than about database storage/querying

Thoughts...

» Basic design principles

o Faithful
* Must make sense

o Satisfies the application requirements

> Models the requisite domain knowledge
* |f not modeled, lost afterwards

> Avoid redundancy
- Potential for inconsistencies

> Go for simplicity

» Typically an iterative process that goes back and forth

Design Issues

» Entity sets vs attributes
> Depends on the semantics of the application
> Consider telephone

instructor
instructor phone
ID D | phone number
hame - location
salary hame

phone_number salary

(a) (b)

Design Issues

» Entity sets vs Relationsihp sets

o Consider takes

section_reg

section

semester
year.

registration

student_reg

student

ID
name
tot_cred

Figure 7.18 Replacement of takes by registration and two relationship sets

Design Issues

» Entity sets vs attributes
> Depends on the semantics of the application
> Consider telephone

» Entity sets vs Relationsihp sets
> Consider loan

» N-ary vs binary relationships

> Possible to avoid n-ary relationships, but there are some cases
where it is advantageous to use them

» It is not an exact science !!

Recap

» Entity-relationship Model

° |Intuitive diagram-based representation of domain knowledge,
data properties etc...

> Two key concepts:
 Entities
- Relationships

> We also looked at:
* Relationship cardinalities
* Keys

- Weak entity sets

Recap

» Entity-relationship Model

> No standardized model (as far as | know)
* You will see different types of symbols/constructs

> Easy to reason about/understand/construct

> Not as easy to implement

- Came after the relational model, so no real implementation was
ever done

* Mainly used in the design phase

Django: Overview

» Web application framework written in Python
» Uses a Model-Template-View pattern

» Very similar to the Model-View-Controller pattern that
others (e.g., Ruby on Rails) use

» The slides we covered are from an old talk on Django by
Simon Willison, a co-creator of Django
> The talk is from 2006, but mostly still seems correct

Project

» Basic skeleton already created for you
» You have to change some of the files
» Separately, generalize the E/R model that is provided

