CMSC424: Normalization

Instructor: Amol Deshpande
amol@cs.umd.edu




Today’s Class

» Review Reading Homework
> Normalization overview; FDs

» More details
> Normalization Theory

» Other things

> iPython Notebook for Normalization
> Project2: Let us know what help we can provide




Relational Database Design

» Where did we come up with the schema that we used ?
> E.g. why not store the actor names with movies ?

» If from an E-R diagram, then:
> Did we make the right decisions with the E-R diagram ?

» Goals:

> Formal definition of what it means to be a “good” schema.
> How to achieve it.




Movies Database Schema

Movie(title, year, length, inColor, studioName, producerC#)

Starsin(movieTitle, movieYear, starName)

MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)

Studio(name, address, presC#)

Changed to:

Movie(title, year, length, inColor, studioName, producerC#, starName)

<Starsin merged into above>
MovieStar(name, address, gender, birthdate)
MovieExec(name, address, cert#, netWorth)

Studio(name, address, presC#)

Is this a good schema 77?




Movie(title, year, length, inColor, studioName, producerC#, starName)

Title Year Length inColor | StudioName | prodC# StarName
Starwars | 1977 121 Yes Fox 128 Hamill
Starwars | 1977 121 Yes Fox 128 Fisher
Starwars | 1977 121 Yes Fox 128 H. Ford
King Kong | 2005 187 Yes Universal 150 Watts
King Kong | 1933 100 no RKO 20 Fay
|ssues:

1.  Redundancy = higher storage, inconsistencies (“anomalies”)
update anomalies, insertion anamolies

2. Need nulls

Unable to represent some information without using nulls




Movie(title, year, length, inColor, studioName, producerC#, starNames)

Title Year Length inColor | StudioName | prodC# StarNames

Starwars | 1977 121 Yes Fox 128 {Hamill,
Fisher, H.
ford}

King Kong | 2005 187 Yes Universal 150 Watts

King Kong | 1933 100 no RKO 20 Fay

|ssues:

3. Avoid sets

- Hard to represent

- Hard to query




Smaller schemas always good 777?

Split Studio(name, address, presC#) into:

Studio1 (name, presC#) Studio2(name, address)???
Name presC# Name Address
Fox 101 Fox Address1
Studio2 101 Studio2 Address1
Universial | 102 Universial | Address2

This process is also called “decomposition”
Issues:
4. Requires more joins (w/o any obvious benefits)
5. Hard to check for some dependencies
What if the “address” is actually the presC#’s address ?

No easy way to ensure that constraint (w/o a join).




Smaller schemas always good 777?
Decompose Starsin(movieTitle, movieYear, starName) into:

Starsin1(movieTitle, movieYear) Starsin2(movieTitle, starName) 7?77

movieTitle movieYear movieTitle | starName

Star wars 1977 Star Wars Hamill

King Kong 1933 King Kong | Watts

King Kong 2005 King Kong | Faye
Issues:

6. “joining” them back results in more tuples than what we started with
(King Kong, 1933, Watts) & (King Kong, 2005, Faye)
This is a “lossy” decomposition
We lost some constraints/information

The previous example was a “lossless” decomposition.




Desiderata

» No sets
» Correct and faithful to the original design
> Avoid lossy decompositions
» As little redundancy as possible
> To avoid potential anomalies
» No “inability to represent information”
> Nulls shouldn’t be required to store information

» Dependency preservation
> Should be possible to check for constraints

Not always possible.
We sometimes relax these for:

simpler schemas, and fewer joins during queries.




Some of Your Questions

» Atomicity
° |t depends primarily on how you use it
> A String is not really atomic (can be split into letters), but do you
want to query the letters directly? Or would your queries operate

on the strings?

» Which NF to use?
> Your choice — Normalization theory is a tool to help you understand

the tradeoffs

» Normal forms higher than 3NF?
> Actually we always use 4NF — we will discuss later

» Trivial FDs
> Just means that: RHS is contained in LHS — that’s all




Approach

1. We will encode and list all our knowledge about the schema
> Functional dependencies (FDs)
SSN = name (means: SSN “implies” length)
> If two tuples have the same “SSN”, they must have the same “name”
movietitle 2 length ???? Not true.
> But, (movietitle, movieYear) = length --- True.

2. We will define a set of rules that the schema must follow to be considered
good

o “Normal forms”: INF, 2NF, 3NF, BCNF, 4NF, ...
> A normal form specifies constraints on the schemas and FDs

3. If notin a “normal form”, we modify the schema




FDs: Example 1

Title Year Length StarName | Birthdate producerC# | Producer | Prdocuer | netWorth
-address | -name

Plane 1927 NULL NULL WD100 Mickey Walt 100000
Crazy Rd Disney

Star 1977 121 H. Ford 7/13/42 GL102 Tatooine George 10A9
Wars Lucas

Star 1977 121 M. Hamill 9/25/51 GL102 Tatooine George 10A9
Wars Lucas

Star 1977 121 C. Fisher 10/21/56  GL102 Tatooine George 10A9
Wars Lucas

King 1933 100 F. Wray 9/15/07 MC100

Kong

King 2005 187 N. Watts 9/28/68 PJ100 Middle Peter 1018

Kong Earth Jackson




FDs: Example 2

State State State County County Senator Senator Senator Senator
Name Code Population | Name Population | Name Elected Born Affiliation

Alabama 4779736 Autauga 54571 Jeff 1997 1946 ‘R
Sessions

Alabama AL 4779736 Baldwin 182265 Jeff 1997 1946 ‘R’
Sessions

Alabama AL 4779736 Barbour 27457 Jeff 1997 1946 ‘R’
Sessions

Alabama AL 4779736 Autauga 54571 Richard 1987 1934 ‘R’
Shelby

Alabama AL 4779736 Baldwin 182265 Richard 1987 1934 ‘R’
Shelby

Alabama AL 4779736 Barbour 27457 Richard 1987 1934 ‘R’

Shelby




FDs: Example 3

Course | Course | Dept Credits Section Semester | Year Building | Room Capacity | Time
[») Name Name ID No. Slot ID

Functional dependencies

course_id - title, dept_name, credits
building, room_number - capacity
course _id, section_id, semester, year - building, room_number, time_slot_id




Examples from Quiz

» advisor(s id,i id, s name, s dept name, i name,
i dept name)




Functional Dependencies

» Let R be a relation schema and
aCR and BCR
» The functional dependency

oa—f
holds on Riff for any legal relations r(R), whenever two tuples t; and t, of r

have same values for a, they have same values for f.

tila]=t,[a] = [B] =t,[B]

» Example:
A B
1 4
1 5
3 7

» On this instance, A — B does NOT hold, but B — A does hold.




Functional Dependencies

Difference between holding on an instance and holding on all legal relation

Title Year Length | inColor | StudioName prodC# StarName
Star wars 1977 121 Yes Fox 128 Hamill
Star wars 1977 121 Yes Fox 128 Fisher
Star wars 1977 121 Yes Fox 128 H. Ford
King Kong | 1933 100 no RKO 20 Fay

Title = Year holds on this instance

Is this a true functional dependency ? No.

Two movies in different years can have the same name.
Can’t draw conclusions based on a single instance
Need to use domain knowledge to decide which FDs hold




FDs and Redundancy

» Consider a table: R(A, B, C):
> With FDs: B > C, and A = BC
> So “A” is a Key, but “B” is not

» So: there is a FD whose left hand side is not a key
o Leads to redundancy

-
Since B is not unique, it may be duplicated al bl cl
Every time B is duplicated, so is C a2 b1 cl
a3 bl cl
a4 TD‘Z ‘E‘i
Not a problem with A - BC LB b2 c2
A can never be duplicated 26 b3 3
a7 b4 cl

Not a duplication - Two different tuples just

\\\\\\W happen to have the same value for C



FDs and Redundancy

» Better to split it up

PR s lc___

al bl bl i
a2 bl b2 2
a3 bl b3 3
a4 b2 b4 cl

a5 b2
ab b3
a7 b4

Not a duplication - Two different tuples just
happen to have the same value for C




BCNF: Boyce-Codd Normal Form

» Arelation schema R is “in BCNF” if:

> Every functional dependency A = B that holds on it is E/THER:
1. Trivial OR

2. Ais a superkey of R

»  Whyis BCNF good ?

o @uarantees that there can be no redundancy because of a
functional dependency

o Consider a relation r(A, B, C, D) with functional dependency

A =2 B and two tuples: (al, b1, c1, d1), and (a1, b1, c2, d2)
b1 is repeated because of the functional dependency

BUT this relation is not in BCNF
A =2 B is neither trivial nor is A a superkey for the relation



Functional Dependencies

» Functional dependencies and keys
> A key constraint is a specific form of a FD.
o E.g.if Ais a superkey for R, then:

A 2R
> Similarly for candidate keys and primary keys.

» Deriving FDs

> A set of FDs may imply other FDs
> e.g.IfA 2B, and B = C, then clearly A 2 C

> We will see a formal method for inferring this later




Definitions

1. A relation instance r satisfies a set of functional
dependencies, F, if the FDs hold on the relation

2. F holds on a relation schema R if no legal (allowable)
relation instance of R violates it

3. A functional dependency, A = B, is called trivial if:

°  Bisasubset of A
o e.g. Movieyear, length = length

4. Given a set of functional dependencies, F, its closure,
F*, is all the FDs that are implied by FDs in F.




Approach

1. We will encode and list all our knowledge about the schema
> Functional dependencies (FDs)

> Also:
* Multi-valued dependencies (briefly discuss later)

- Join dependencies etc...

2. We will define a set of rules that the schema must follow to
be considered good

o “Normal forms”: INF, 2NF, 3NF, BCNF, 4NF, ...

o A normal form specifies constraints on the schemas and FDs

3. If notin a “normal form”, we modify the schema




BCNF: Boyce-Codd Normal Form

» Arelation schema R is “in BCNF” if:

> Every functional dependency A = B that holds on it is E/THER:
1. Trivial OR

2. Ais a superkey of R

»  Whyis BCNF good ?

o @uarantees that there can be no redundancy because of a
functional dependency

o Consider a relation r(A, B, C, D) with functional dependency

A =2 B and two tuples: (al, b1, c1, d1), and (a1, b1, c2, d2)
b1 is repeated because of the functional dependency

BUT this relation is not in BCNF
A =2 B is neither trivial nor is A a superkey for the relation



BCNF and Redundancy

»  Why does redundancy arise ?
o @GivenaFD, A - B, if Ais repeated (B — A) has to be repeated
1. Ifrule 1 is satisfied, (B — A) is empty, so not a problem.

2. Ifrule 2 is satisfied, then A can’t be repeated, so this doesn’t
happen either

» Hence no redundancy because of FDs
°  Redundancy may exist because of other types of dependencies
Higher normal forms used for that (specifically, 4NF)

o Data may naturally have duplicated/redundant data

We can’t control that unless a FD or some other dependency is
defined




Approach

1. We will encode and list all our knowledge about the schema

> Functional dependencies (FDs); Multi-valued dependencies; Join
dependencies etc...

2. We will define a set of rules that the schema must follow to
be considered good
> “Normal forms”: INF, 2NF, 3NF, BCNF, 4NF, ...

> A normal form specifies constraints on the schemas and FDs

3. If notin a “normal form”, we modify the schema
> Through lossless decomposition (splitting)

o Or direct construction using the dependencies information




BCNF

» What if the schema is not in BCNF ?
o Decompose (split) the schema into two pieces.

» From the previous example: split the schema into:
> r1(A, B), r2(A, C, D)

> The first schema is in BCNF, the second one may not be (and may
require further decomposition)

> No repetition now: r1 contains (a1, b1), but b1 will not be repeated

» Careful: you want the decomposition to be lossless

> No information should be lost
- The above decomposition is lossless
> We will define this more formally later




Outline

3 Mechanisms and definitions to work with FDs
o Closures, candidate keys, canonical covers etc...

o Armstrong axioms

v

Decompositions

o Loss-less decompositions, Dependency-preserving decompositions

> BCNF

° How to achieve a BCNF schema
b BCNF may not preserve dependencies
B 3NF: Solves the above problem

b BCNF allows for redundancy

3 4ANF: Solves the above problem




1. Closure

» Given a set of functional dependencies, F, its closure, F*, is
all FDs that are implied by FDs in F.
> e.g.lfA=>B,and B 2 C, thenclearlyA 2 C

» We can find F+ by applying Armstrong’s Axioms:
o if C a,thena — (reflexivity)
o ifa—p,thenya— yf (augmentation)
o ifa—pB,and p — vy, then o — vy (transitivity)

» These rules are
> sound (generate only functional dependencies that actually hold)
> complete (generate all functional dependencies that hold)




Additional rules

» Ifa — fand o — vy, then a — Sy (union)
» If a — By, then a — Fand a — y (decomposition)

» Ifao— B and y B — 0, then .y — 0 (pseudotransitivity)

» The above rules can be inferred from Armstrong’s axioms.




Example

» R=(A,B,C, G, H, I

F={ A—B
A—C
CG—H
CG—|
B — H}
» Some members of F*
- A—H
* by transitivity from A—=Band B— H
° AG — |

* by augmenting A — C with G, to get AG — CG
and then transitivity with CG — |
° CG — HI
* by augmenting CG — | to infer CG — CGI,
and augmenting of CG — H to infer CGl — HI,
and then transitivity




2. Closure of an attribute set

» Given a set of attributes A and a set of FDs F, closure of A under
F is the set of all attributes implied by A

» In other words, the largest B such that: A 2> B

» Redefining super keys:
o The closure of a super key is the entire relation schema

» Redefining candidate keys:
1. It is a super key
2. No subset of it is a super key




Computing the closure for A

» Simple algorithm

» 1. Start with B = A.

» 2. Go over all functional dependencies, p —= vy, in F*
» 3.1f B C B, then

Add yto B
» 4. Repeat till B changes




Example

» R=(A, B,C G, H,I

F={ A—B
A—C
CG—H
CG— |
B — H}

» (AG) *?
o 1. result=AG
o 2.result = ABCG (A— Cand A — B)

> 3.result = ABCGH (CG — H and CG C AGBC()
o 4.result = ABCGHI (CG — I and CG € AGBCH

» Is (AG) a candidate key ?
1. It is a super key.
2. (A+) = BCH, (G+) = G.




Uses of attribute set closures

» Determining superkeys and candidate keys

»  Determining if A = Bis a valid FD
Check if A+ contains B

» Can be used to compute F+




3. Extraneous Attributes

» Consider F, and a functional dependency, A =2 B.

» “Extraneous”: Are there any attributes in A or B that can
be safely removed ?
Without changing the constraints implied by F

» Example: Given F={A — C, AB — CD}
o Cis extraneous in AB — CD since AB — C can be inferred even
after deleting C

> je., given: A =2 C, and AB = D, we can use Armstrong Axioms to
infer AB 2 CD




4. Canonical Cover

» A canonical cover for Fis a set of dependencies F_ such
that
° Flogically implies all dependencies in F_ and
> F.logically implies all dependencies in F, and

> No functional dependency in F_ contains an extraneous
attribute, and

> Each left side of functional dependency in F_is unique

» In some (vague) sense, it is a minimal version of F

» Read up algorithms to compute F.




Outline

b Mechanisms and definitions to work with FDs
° Closures, candidate keys, canonical covers etc...

o Armstrong axioms

v

Decompositions

° Loss-less decompositions, Dependency-preserving decompositions

> BCNF

° How to achieve a BCNF schema
b BCNF may not preserve dependencies
B 3NF: Solves the above problem

b BCNF allows for redundancy

> ANF: Solves the above problem




Loss-less Decompositions

» Definition: A decomposition of R into (R1, R2) is called lossless
if, for all legal instance of r(R):

r=1lg(r) 1l 9

» In other words, projecting on R1 and R2, and joining back,
results in the relation you started with

» Rule: A decomposition of R into (R1, R2) is lossless, iff:
R1 n R2 2 R1 or R1INR2 2R2

in F+.




Dependency-preserving Decompositions

Is it easy to check if the dependencies in F hold ?
Okay as long as the dependencies can be checked in the same table.

Consider R=(A, B, C), and F={A 2 B, B 2 C}

1. Decompose into R1 = (A, B), and R2 = (A, C)
Lossless ? Yes.
But, makes it hard to check for B = C
The data is in multiple tables.
2. On the other hand, R1 = (A, B), and R2 = (B, C),
is both lossless and dependency-preserving
Really ? What about A 2> C?
If we can check A 2 B,and B 2 C, A =2 Cis implied.




Dependency-preserving Decompositions

» Definition:
> Consider decomposition of R into R1, ..., Rn.

> Let F, be the set of dependencies F * that include only attributes
in R,

» The decomposition is dependency preserving, if
(F,LUF,U..UF )" =F"




Outline

b Mechanisms and definitions to work with FDs
° Closures, candidate keys, canonical covers etc...

o Armstrong axioms

v

Decompositions

o Loss-less decompositions, Dependency-preserving decompositions

> BCNF

o How to achieve a BCNF schema
b BCNF may not preserve dependencies
b 3NF: Solves the above problem

b BCNF allows for redundancy

> ANF: Solves the above problem




BCNF

» @Given a relation schema R, and a set of functional
dependencies F, if every FD, A =2 B, is either:

1. Trivial
2. Ais a superkey of R
Then, R is in BCNF (Boyce-Codd Normal Form)

» What if the schema is not in BCNF ?
> Decompose (split) the schema into two pieces.
o Careful: you want the decomposition to be lossless




Achieving BCNF Schemas

For all dependencies A = B in F+, check if A is a superkey

By using attribute closure

If not, then
Choose a dependency in F+ that breaks the BCNF rules, say A > B
Create R1=AB
Create R2=A(R-B—-A)
Note that: R1 N R2 = A and A - AB (= R1), so this is lossless decomposition

Repeat for R1, and R2
By defining F1+ to be all dependencies in F that contain only attributes in R1

Similarly F2+




Example 1

R=(A B, C)
F={A->B,B-> C}
Candidate keys = {A}
BCNF = No. B - C violates.

B->C
R1=(B, C) R2 = (A, B)
F1={B > C} F2 ={A > B}
Candidate keys = {B} Candidate keys = {A}

BCNF = true BCNF = true




Example 2-1 R=(A B,C,D,E)
F={A-> B,BC > D}
Candidate keys = {ACE}
BCNF = Violated by {A > B, BC - D} etc...

FromA-> B and BC - D by
pseudo-transitivity

A->B
R1 = (A, B) R2=(A,C,D, E
F1={A-> B} F2 = {AC - D}
Candidate keys = {A} Candidate keys = {ACE}
BCNF = true BCNF = false (AC - D)

: AC > D

Dependency preservation ?7??
We can check:

A -> B (R1),AC = D (R3),

but we lost BC > D R3=(A.C.D) R4 = (A, C,E)
So this is not a dependency F?’ ={AC > D} F4 - {} [[only trivial ]]
-preserving decomposition Candidate keys = {AC} Candidate keys = {ACE}

BCNF = true BCNF = true



Example 2-2 R=(A B,C,D,E)

F={A-> B,BC > D}
Candidate keys = {ACE}
BCNF = Violated by {A - B, BC - D} etc...

BC->D
R1=(B, C, D) R2=(B, C,A E)
F1={BC - D} F2 ={A-> B}
Candidate keys = {BC} Candidate keys = {ACE}
BCNF = true BCNF = false (A > B)

_ A->B
Dependency preservation ?7??
We can check:
BC - D (R1),A-> B (R3),
Dependency-preserving R3__ (A, B) R&=A.C, E)
decomposition F3={A-> B} F4 = {} [[ only trivial ]]
Candidate keys = {A} Candidate keys = {ACE}

AN BCNF = true BCNF = true




Example 3 R=(A B,C,D,E, H)

F={A-> BC, E > HA}
Candidate keys = {DE}
BCNF = Violated by {A > BC} etc...

A-> BC
R1=(A, B, C) R2 = (A, D, E, H)
F1={A-> BC} F2 = {E 2> HA}
Candidate keys = {A} Candidate keys = {DE}
BCNF = true BCNF = false (E 2 HA)
E > HA
Dependency preservation ?7??
We can check:
A -> BC (R1), E 2> HA (R3),
Dependency-preserving R3=(E,HA) R4 = (ED)
decomposition F3 ={E 2> HA} F4 = {} [[ only trivial ]]
Candidate keys = {E} Candidate keys = {DE}

AN BCNF = true BCNF = true




Outline

b Mechanisms and definitions to work with FDs
° Closures, candidate keys, canonical covers etc...

o Armstrong axioms

v

Decompositions

o Loss-less decompositions, Dependency-preserving decompositions

> BCNF

° How to achieve a BCNF schema
b BCNF may not preserve dependencies
b 3NF: Solves the above problem

b BCNF allows for redundancy

> ANF: Solves the above problem




BCNF may not preserve dependencies

R=, K L}
F={K—L L—=K)

v Vv

v

Two candidate keys = JK and JL

R is not in BCNF

v

v

Any decomposition of R will fail to preserve
JK— L

v

This implies that testing for JK — L requires a join




BCNF may not preserve dependencies

» Not always possible to find a dependency-preserving
decomposition that is in BCNF.

» PTIME to determine if there exists a dependency-
preserving decomposition in BCNF
° in size of F

» NP-Hard to find one if it exists

» Better results exist if F satisfies certain properties




Outline

b Mechanisms and definitions to work with FDs
° Closures, candidate keys, canonical covers etc...

o Armstrong axioms

v

Decompositions

o Loss-less decompositions, Dependency-preserving decompositions

> BCNF

° How to achieve a BCNF schema
b BCNF may not preserve dependencies
b 3NF: Solves the above problem

b BCNF allows for redundancy

> ANF: Solves the above problem




3NF

» Definition: Prime attributes
An attribute that is contained in a candidate key for R

» Example 1:
- R=(A,B,C,D, E, H}, F={A 2 BC, E 2 HA},
> Candidate keys = {ED}
° Prime attributes: D, E

» Example 2:
o R=(J,K L), F={K=> L, L2 K},
o Candidate keys = {JL, JK}
° Prime attributes: J, K, L

» Observation/Intuition:

1. A key has no redundancy (is not repeated in a relation)
2. A prime attribute has limited redundancy




3NF

» Given a relation schema R, and a set of functional
dependencies F, if every FD, A =2 B, is either:

1. Trivial, or

2. A is a superkey of R, or

3. All attributes in (B—A) are prime
Then, Ris in 3NF (3@ Normal Form)

» Why is 3NF good ?




3NF and Redundancy

»  Why does redundancy arise ?
o @GivenaFD, A - B, if Ais repeated (B — A) has to be repeated
1. Ifrule 1 is satisfied, (B — A) is empty, so not a problem.

If rule 2 is satisfied, then A can’t be repeated, so this doesn’t
happen either

3. If not, rule 3 says (B — A) must contain only prime attributes
This limits the redundancy somewhat.

» So 3NF relaxes BCNF somewhat by allowing for some (hopefully
limited) redundancy
» Why?

o There always exists a dependency-preserving lossless decomposition in 3NF.




Decomposing into 3NF

» A synthesis algorithm

» Start with the canonical cover, and construct the 3NF
schema directly

» Homework assignment.




Outline

b Mechanisms and definitions to work with FDs
° Closures, candidate keys, canonical covers etc...

o Armstrong axioms

v

Decompositions

o Loss-less decompositions, Dependency-preserving decompositions

> BCNF

° How to achieve a BCNF schema
b BCNF may not preserve dependencies
b 3NF: Solves the above problem

b BCNF allows for redundancy

> ANF: Solves the above problem




BCNF and redundancy

MovieTitle MovieYear StarName Address

Star wars 1977 Harrison Ford Address 1, LA
Star wars 1977 Harrison Ford Address 2, FL
Indiana Jones 198x Harrison Ford Address 1, LA
Indiana Jones 198x Harrison Ford Address 2, FL
Witness 19xx Harrison Ford Address 1, LA
Witness 19xx Harrison Ford Address 2, FL

Lot of redundancy
FDs ? No non-trivial FDs.
So the schema is trivially in BCNF (and 3NF)

What went wrong ?




Multi-valued Dependencies

» The redundancy is because of multi-valued dependencies
» Denoted:

starname ——> agddress

starname ——> movietitle, movieyear

» Should not happen if the schema is constructed from an E/R
diagram

» Functional dependencies are a special case of multi-valued
dependencies




Outline

b Mechanisms and definitions to work with FDs
° Closures, candidate keys, canonical covers etc...

o Armstrong axioms

v

Decompositions

o Loss-less decompositions, Dependency-preserving decompositions

> BCNF

° How to achieve a BCNF schema
b BCNF may not preserve dependencies
b 3NF: Solves the above problem

b BCNF allows for redundancy

> 4ANF: Solves the above problem




ANF

» Similar to BCNF, except with MVDs instead of FDs.

» Given a relation schema R, and a set of multi-valued
dependencies F, if every MVD, A 22 B, is either:

1. Trivial, or
2. Ais a superkey of R
Then, Ris in 4NF (4th Normal Form)

» 4NF - BCNF = 3NF = 2NF - 1NF:

o |f a schemais in 4NF, it is in BCNF.
o |faschemaisin BCNF, it is in 3NF.

» Other way round is untrue.




Comparing the normal forms

3NF BCNF 4NF
Eliminates redundancy | Mostly Yes Yes
because of FD’s
Eliminates redundancy | No No Yes
because of MVD’s
Preserves FDs Yes. Maybe Maybe
Preserves MVDs Maybe Maybe Maybe

4NF is typically desired and achieved.
A good E/R diagram won'’t generate non-4NF relations at all
Choice between 3NF and BCNF is up to the designer




Database design process

» Three ways to come up with a schema

1. Using E/R diagram
> |f good, then little normalization is needed

> Tends to generate 4NF designs

2. A universal relation R that contains all attributes.
o Called universal relation approach
> Note that MVDs will be needed in this case

3. An ad hoc schema that is then normalized

> MVDs may be needed in this case




Recap

» What about 15t and 2"d normal forms ?

» INF:
> Essentially says that no set-valued attributes allowed

> Formally, a domain is called atomic if the elements of the
domain are considered indivisible

o A schema is in 1NF if the domains of all attributes are atomic

> We assumed 1NF throughout the discussion
* Non 1INF is just not a good idea

» 2NF:

o Mainly historic interest
> See Exercise 7.15 in the book




Recap

» We would like our relation schemas to:
> Not allow potential redundancy because of FDs or MVDs
> Be dependency-preserving:

- Make it easy to check for dependencies
* Since they are a form of integrity constraints

» Functional Dependencies/Multi-valued Dependencies
> Domain knowledge about the data properties

» Normal forms

> Defines the rules that schemas must follow
o 4ANF is preferred, but 3NF is sometimes used instead




Recap

» Denormalization
o After doing the normalization, we may have too many tables
> We may denormalize for performance reasons
- Too many tables = too many joins during queries
> A better option is to use views instead
* So if a specific set of tables is joined often, create a view on the join

» More advanced normal forms
> project-join normal form (PJNF or 5NF)
> domain-key normal form
> Rarely used in practice




