CMSC424: Relational Algebra;
JDBC; Remaining SQL

Instructor: Amol Deshpande
amol@cs.umd.edu

Today’s Class

» Advanced SQL

> Accessing SQL From a Programming Language
* Dynamic SQL: JDBC and ODBC
- Embedded SQL

> Functions and Procedural Constructs
° Integrity Constraints
> Advanced Aggregation Features

» Relational Algebra
> Formal Semantics of SQL (i.e., how to deal with duplicates)

» Other things

> Exam Wednesday -- everything covered so far, including today

> Project 3: JDBC; Some advanced SQL; Query Plans
- Will post a iPython notebook on the last one in a couple of days

Client-server Architectures

Many different possibilities to build an end-to-end
application, but often see 2-tier or 3-tier architectures

// \\ // _______________ \\

' ‘I [\

|

| e | : user :

| | client | |

| |

| | : :

: : | |
D ' .. . |

{ application } | application client | |

\ / \\ ;

~_ ____4r— s N P
network network
//’_ ______________ \\ //’_ ______________ \\I
| . o

| | | application server |

| |

| | database system | | | | |

| | server | |

| | | database system | |

|

\) \)

N / N 7/

(a) Two-tier architecture (b) Three-tier architecture

Figure 1.6 Two-tier and three-tier architectures.

Three-tier Architecture

Presentation tier

The top-most level of the application

is the user interface. The main function
of the interface is to translate tasks
and results to something the user can
understand.

Logic tier

This layer coordinates the
application, processes commands,
makes logical decisions and
evaluations, and performs
calculations. It also moves and
processes data between the two
surrounding layers.

Data tier

Here information is stored and retrieved
from a database or file system. The
information is then passed back to the
logic tier for processing, and then
eventually back to the user.

>GET SALES
TOTAL

»GET SALES
TOTAL

4 TOTAL SALES

Y
GET LIST OF ALL ADD ALL SALES
SALES MADE TOGETHER
LAST YEAR T
SALE 1
QUERY SALE 2
SALE 3
\l SALE 4
R
_—
Storage

Database

e.g., Web servers

e.g., Ruby on Rails, Java
EE, ASP.NET, PHP,
ColdFusion, Perl or
Python frameworks

e.g., PostgreSQL, Oracle,
MySQL, etc...

Outline

» Advanced SQL

o Accessing SQL From a Programming Language

* Dynamic SQL
- JDBC and ODBC

- Embedded SQL
> Functions and Procedural Constructs
> Advanced Aggregation Features
° Integrity Constraints

> Recursion
» Relational Algebra

» Formal Semantics of SQL (i.e., how to deal with
duplicates)

JDBC and ODBC

» APl (application-program interface) for a program to interact with a
database server

» Application makes calls to
> Connect with the database server
- Send SQL commands to the database server
> Fetch tuples of result one-by-one into program variables

» ODBC (Open Database Connectivity) works with C, C++, C#, and
Visual Basic

- Other API’ s such as ADO.NET sit on top of ODBC

» JDBC (Java Database Connectivity) works with Java

JDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)

{

try {
Class.forName ("oracle.jdbc.driver.OracleDriver");

Connection conn = DriverManager.getConnection(
"jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);

Statement stmt = conn.createStatement();
... Do Actual Work
stmt.close();
conn.close();
}
catch (SQLException sqle) {
System.out.printin("SQLException : " + sqle);

}

JDBC Code (Cont.)

» Update to database

try {
stmt.executeUpdate(

"insert into instructor values(’ 77987, ' Kim’, ’ Physics’, 98000)");
} catch (SQLException sqle)

{

}
» Execute query and fetch and print results

ResultSet rset = stmt.executeQuery(
"select dept_name, avg (salary)
from instructor
group by dept_name");
while (rset.next()) {
System.out.printin(rset.getString("dept_name") + " " + rset.getFloat(2));

System.out.printin("Could not insert tuple. " + sqle);

}

JDBC Code Details

» Getting result fields:
- rs.getString(“dept_name”) and rs.getString(1) equivalent

if dept_name is the first argument of select result.
» Dealing with Null values

(11 ”

o inta=rs.getint("a");
if (rs.wasNull()) Systems.out.printin(“Got null value”);

Prepared Statement

» PreparedStatement pStmt = conn.prepareStatement(

"insert into instructor values(?,7,?,7)");
pStmt.setString(1, "88877"); pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance"); pStmt.setint(4, 125000);
pStmt.executeUpdate();
pStmt.setString(1, "88878");
pStmt.executeUpdate();

» For queries, use pStmt.executeQuery(), which returns a ResultSet

» WARNING: always use prepared statements when taking an input
from the user and adding it to a query

- NEVER create a query by concatenating strings which you get
as inputs

SQL Injection

String query = "select * from instructor where name =" + name +

n’n

v

» Userenters: X or’Y ="Y

» We execute:
- "select * from instructor where name =""+"X" or’Y ="Y"+""

o which is: select * from instructor where name ="X or’Y =Y’

» Worse: user enters:
- X' ; update instructor set salary = salary + 10000; --

» Prepared statement internally uses:
"select * from instructor where name =" X\" or\'Y\' =\'Y’

Always use prepared statements, with user inputs as parameters
https://en.wikipedia.org/wiki/SQL_injection

SQL Injection: XKCD

HI, THIS 1S

YOUR SON'S SCHOOL.

WERE HAVING SOME
COMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%4

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Stuwdents;-~ 7

!

~OH.YES UTTLE
ROBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
- YOUVE LEARNED
+ TOSANMIZE YOUR
DATARASE INPUTS.

Metadata Features

» ResultSet metadata
» E.g., after executing query to get a ResultSet rs:

> ResultSetMetaData rsmd = rs.getMetaData();
for(inti=1; i <= rsmd.getColumnCount(); i++) {
System.out.printin(rsmd.getColumnName(i));

System.out.printin(rsmd.getColumnTypeName(i));
¥

» Look up the manual etc. for much more

Embedded SQL

» The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, Java, and Cobol.

» Alanguage to which SQL queries are embedded is referred to as
a host language, and the SQL structures permitted in the host
language comprise embedded SQL.

» The basic form of these languages follows that of the System R
embedding of SQL into PL/I.

» EXEC SQL statement is used to identify embedded SQL request
to the preprocessor

EXEC SQL <embedded SQL statement > END_EXEC

Note: this varies by language (for example, the Java embedding
uses #SQL{....};)

Outline

» Advanced SQL

> Accessing SQL From a Programming Language
* Dynamic SQL
- JDBC and ODBC
- Embedded SQL
o Functions and Procedural Constructs
> Recursion

> Advanced Aggregation Features

° Integrity Constraints
» Relational Algebra

» Formal Semantics of SQL (i.e., how to deal with
duplicates)

Procedural Extensions and Stored Procedures

» SQL provides a module language

> Permits definition of procedures in SQL, with if-then-else
statements, for and while loops, etc.

» Stored Procedures
> Can store procedures in the database
> then execute them using the call statement

- permit external applications to operate on the database
without knowing about internal details

» Object-oriented aspects of these features are covered in
Chapter 22 (Object Based Databases)

SQL Functions

» Define a function that, given the name of a department, returns the
count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))

returns integer
begin
declare d_count integer;
select count (*) into d_count
from instructor
where instructor.dept_name = dept_name
return d_count;
end

» Find the department name and budget of all departments with more
that 12 instructors.

select dept_name, budget

from department
dept_count (dept_name) > 1

SQL Functions

» Define a function that, given the name of a department, returns the
count of the number of instructors in that department.

create function dept_count (dept_name varchar(20))

returns integer
begin
declare d_count integer;
select count (*) into d_count
from instructor
where instructor.dept_name = dept_name
return d_count;
end

» Syntax doesn’t seem to work with PostgreSQL; see here for examples:
http://www.postgresql.org/docs/9.1/static/sql-createfunction.html

Table Functions

» SQL:2003 added functions that return a relation as a result
» Example: Return all accounts owned by a given customer

create function instructors_of (dept_name char(20)

returns table (/D varchar(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))
return table

(select ID, name, dept_name, salary

from instructor

where instructor.dept_name = instructors_of.dept_name)

» Usage

select *
from table (instructors_of (‘Music’))

Procedural Constructs (Cont.)

» For loop
> Permits iteration over all results of a query

- Example:

declare n integer defaulit O;
for r as
select budget from department
where dept_name = ‘Music’
do

set n=n-r.budget
end for

Outline

» Advanced SQL

> Accessing SQL From a Programming Language
* Dynamic SQL
- JDBC and ODBC
- Embedded SQL
> Functions and Procedural Constructs
o Recursion

> Advanced Aggregation Features

° Integrity Constraints
» Relational Algebra

» Formal Semantics of SQL (i.e., how to deal with
duplicates)

Recursion in SQL

» SQL:1999 permits recursive view definition

» Example: find which courses are a prerequisite, whether
directly or indirectly, for a specific course

with recursive rec_prereqg(course_id, prereq_id) as (
select course_id, prereq_id
from prereq
union
select rec_prereq.course_id, prereq.prereq_id
from rec_prereq, prereq
where rec_prereq.prereq_id = prereq.course_id
)
select *
from rec_prereq;

This example view, rec_prereq, is called the transitive closure of
the prereq relation

The Power of Recursion

» Recursive views make it possible to write queries, such as
transitive closure queries, that cannot be written without recursion
or iteration.

o Intuition: Without recursion, a non-recursive non-iterative
program can perform only a fixed number of joins of prereq with
itself

| course_id | prereq_id | Iteration Number| Tuples in cl
BIO-301 BIO-101
BIO-399 BIO-101
C5-190 CS-101
CS-315 CS-101
CS-319 CS5-101
C5-347 CS-101
EE-181 PHY-101

(CS-301)
(CS-301), (CS-201)
(CS-301), (CS-201)
(CS-301), (CS-201), (CS-101)
(CS-301), (CS-201), (CS-101)

UG W =R O

Outline

» Advanced SQL

> Accessing SQL From a Programming Language
* Dynamic SQL
- JDBC and ODBC
- Embedded SQL
> Functions and Procedural Constructs
> Recursion

o Advanced Aggregation Features

° Integrity Constraints
» Relational Algebra

» Formal Semantics of SQL (i.e., how to deal with
duplicates)

Ranking

» Rank instructors by salary.

select *, rank() over (order by salary desc) as s_rank
from instructor;

v

An extra order by clause is needed to get them in sorted order

Ranking may leave gaps (two with rank 5, none with rank 6)
Use dense_rank to leave no gaps

Can be done without using new keywords, but probably inefficient

v

v

v

select /D, (1 + (select count(*)
from instructors i2

where i2.salary > i1.salary)) as s_rank
from instructor i1

order by s_rank;

Ranking (Cont.)

» Ranking can be done within partition of the data.
» “Find the rank of instrcutors within each department.”

select /D, dept_name,
rank () over (partition by dept_name order by salary desc)
as dept_rank
from instructor
order by dept_name, dept_rank;

» Other ranking functions:
- percent_rank (within partition, if partitioning is done)
- cume_dist (cumulative distribution)
fraction of tuples with preceding values
> row_number (non-deterministic in presence of duplicates)

Windowing

» Used to smooth out random variations.

» E.g., moving average: “Given sales values for each date, calculate

for each date the average of the sales on that day, the previous day,
and the next day”

» Window specification in SQL.:
> @Given relation sales(date, value)

select date, sum(value) over
(order by date between rows 1 preceding and 1 following)
from sales

» Examples of other window specifications:
- between rows unbounded preceding and current
- rows unbounded preceding
- range between 10 preceding and current row

- All rows with values between current row value —10 to current
value

- range interval 10 day preceding
-_Not including current row

Outline

» Advanced SQL

> Accessing SQL From a Programming Language
* Dynamic SQL
- JDBC and ODBC
- Embedded SQL
> Functions and Procedural Constructs
> Recursion

> Advanced Aggregation Features

o Integrity Constraints
» Relational Algebra

» Formal Semantics of SQL (i.e., how to deal with
duplicates)

’
IC’s

» Predicates on the database

» Must always be true (checked whenever db gets updated)

» There are the following 4 types of IC’s:
o Key constraints (1 table)
e.g., 2 accts can’t share the same acct_no
o Attribute constraints (1 table)
e.g., accts must have nonnegative balance
o Referential Integrity constraints (2 tables)
E.g. bnames associated w/ loans must be names of real branches
> Global Constraints (n tables)

E.g., all loans must be carried by at least 1 customer with a savings
acct

Key Constraints

|dea: specifies that a relation is a set, not a bag
SQL examples:

1. Primary Key:
CREATE TABLE branch(
bname CHAR(15) PRIMARY KEY,
bcity CHAR(20),
assets INT);
or
CREATE TABLE depositor(
cname CHAR(15),
acct_no CHAR(5),
PRIMARY KEY(cname, acct_no));
2. Candidate Keys:
CREATE TABLE customer (
ssn CHAR(9) PRIMARY KEY,
cname CHAR(15),
address CHAR(30),
city CHAR(10),
UNIQUE (cname, address, city));

Key Constraints

Effect of SQL Key declarations
PRIMARY (A1, A2, .., An) or
UNIQUE (A1, A2, ..., An)

Insertions: check if any tuple has same values for A1, A2, .., An as any
inserted tuple. If found, reject insertion

Updates to any of A1, A2, ..., An: treat as insertion of entire tuple

Primary vs Unique (candidate)
1. 1 primary key per table, several unique keys allowed.
2. Only primary key can be referenced by “foreign key” (ref integrity)
3. DBMS may treat primary key differently
(e.g.: create an index on PK)

How would you implement something like this ?

Attribute Constraints

» ldea:
o Attach constraints to values of attributes
> Enhances types system (e.g.: >= 0 rather than integer)
» In SQL:
1. NOT NULL

e.g.: CREATE TABLE branch(
bname CHAR(15) NOT NULL,

Note: declaring bname as primary key also prevents null values

2. CHECK
e.g.. CREATE TABLE depositor(

balance int NOT NULL,
CHECK(balance >= 0),

Attribute Constraints

Domains: can associate constraints with DOMAINS rather than
attributes

e.g: instead of: CREATE TABLE depositor(

balance INT NOT NULL,
CHECK (balance >=0)
)

One can write:
CREATE DOMAIN bank-balance INT (

CONSTRAINT not-overdrawn CHECK (value >= 0),
CONSTRAINT not-null-value CHECK(value NOT NULL));

CREATE TABLE depositor (

balance bank-balance,

)

Advantages?

Attribute Constraints
Advantage of associating constraints with domains:

1. can avoid repeating specification of same constraint
for multiple columns

2. can name constraints
e.g.: CREATE DOMAIN bank-balance INT (
CONSTRAINT not-overdrawn
CHECK (value >= 0),
CONSTRAINT not-null-value
CHECK(value NOT NULL));

allows one to:
1. add or remove:
ALTER DOMAIN bank-balance

ADD CONSTRAINT capped
CHECK(value <= 10000)

2. report better errors (know which constraint violated)

Referential Integrity Constraints

ldea: prevent “dangling tuples” (e.g.: a loan with a bname,
Kenmore, when no Kenmore tuple in branch)

Referencing
Relation ”><: Refer.enced
(e.g. loan) Relation

(e.g. branch)

A

“foreign key” A
bname primary key
bname

Ref Integrity:
ensure that:
foreign key value -> primary key value

(note: don’t need to ensure <, i.e., not all branches have to have loans)

Referential Integrity Constraints

Referenced
Relation
(e.g. branch)

bname bname
Referencing X ™
Relation \
(e.g. loan) X 3 x
In SQL.:

CREATE TABLE branch(
bname CHAR(15) PRIMARY KEY

)

CREATE TABLE loan (

FOREIGN KEY bname REFERENCES branch);

Affects:

1) Insertions, updates of referencing relation
2) Deletions, updates of referenced relation

Referential Integrity Constraints

c c

t; X ~—

t x\

j —>| X

Ans: 3 possibilities
1) reject deletion/ update

2) set t [c], t[c] = NULL

3) propagate deletion/update
DELETE: delete ti, tj

S

what happens when
we try to delete
this tuple?

UPDATE: setti[c], tj[c] to updated values

Referential Integrity Constraints

C c

] -+ X \
what happens when
A we try to delete

B

this tuple?

CREATE TABLEA(.....
FOREIGN KEY ¢ REFERENCES B action

Action: 1) left blank (deletion/update rejected)

2) ON DELETE SET NULL/ ON UPDATE SET NULL
sets ti[c] = NULL, tj[c] = NULL

3) ON DELETE CASCADE
deletes ti, tj
ON UPDATE CASCADE
sets ti[c], tj[c] to new key values

Global Constraints

ldea: two kinds
1) single relation (constraints spans multiple columns)
o E.g.: CHECK (total = svngs + check) declared in the CREATE TABLE

2) multiple relations: CREATE ASSERTION

SQL examples:
1) single relation: All Bkin branches must have assets > 5M

CREATE TABLE branch (
bcity CHAR(15),
assets INT,
CHECK (NOT (bcity = ‘Bkin’) OR assets > 5M))

Affects:

insertions into branch
updates of bcity or assets in branch

Global Constraints

SQL example:
2) Multiple relations: every loan has a borrower with a savings account

CHECK (NOT EXISTS (
SELECT ~*
FROM loan AS L
WHERE NOT EXISTS(
SELECT ~*
FROM borrower B, depositor D, account A
WHERE B.cname = D.cname AND
D.acct_no = A.acct_no AND
L.Ino = B.Ino)))

Problem: Where to put this constraint? At depositor? Loan?

Ans: None of the above:
CREATE ASSERTION loan-constraint
CHECK(.....)

Checked with EVERY DB update!
very expensive.....

Summary: Integrity Constraints

CREATE DOMAIN
(Not NULL, CHECK)

Constraint Type Where declared Affects... Expense

Key Constraints CREATE TABLE Insertions, Updates Moderate
(PRIMARY KEY, UNIQUE)

Attribute Constraints | CREATE TABLE Insertions, Updates Cheap

Referential Integrity

Table Tag
(FOREIGN KEY
REFERENCES)

1.Insertions into
referencing rel’n

2. Updates of
referencing rel’n of
relevant attrs

3. Deletions from
referenced rel’'n

4. Update of
referenced rel’n

1,2: like key constraints.
Another reason to index/
sort on the primary keys

3,4: depends on

a. update/delete policy
chosen

b. existence of indexes
on foreign key

Global Constraints

Table Tag (CHECK)
or

outside table
(CREATE ASSERTION)

1. For single rel’n
constraint, with
insertion, deletion of
relevant attrs

2. For assesrtions w/
every db modification

1. cheap

2. very expensive

Outline

» Advanced SQL

» Relational Algebra

Relational Algebra

» Procedural language

» Six basic operators
o select
° project
° union
> set difference
o Cartesian product
° rename

» The operators take one or more relations as inputs and
give a new relation as a result.

Select Operation

: O r
Relation r A|lB|C|D A=B/\D>5() A|/B|C|D
al|lal| 1|7 olal 117
a | B |D|7 BB [23/10
B pl12] 3
B | B [23]10
SQL Equivalent:
select *
fromr

where A=Band D >5

Unfortunate naming confusion

Project

Relation r AIBICID
ol ol 1|7
al|pP|S|T7
BB |12] 3
B | B 23|10

SQL Equivalent:

select distinct A, D
fromr

&

10

Set Union, Difference

Relationr,s | A | B A | B rUs: | A| B r—s: | A|B
o | 1 o | 2 o | 1 o | 1
a | 2 B | 3 o | 2 B | 1
p |1 S p |1
r B |3
Must be compatible schemas SQL Equivalent:

select * fromr
union/except/intersect
select * from s;

What about intersection ?
Can be derived
rlis=r—(r —s);

This iIs one case where
duplicates are removed.

Cartesian Product

Relationr,s | AlB|l lclD|E
o 1 a 10| a
p |10| a
Bl211g]20] b
r vy 10| b
S
SQL Equivalent:
select distinct *
fromr, s

Does not remove duplicates.

r xs:

>

o

@

m

TR QR LR QR

NN DNDN A A A A

<X TR TR

10
10
20
10
10
10
20
10

T Q0O T O

Rename Operation

» Allows us to name, and therefore to refer to, the results
of relational-algebra expressions.

» Allows us to refer to a relation by more than one name.
Example:

P x (E)
returns the expression E under the name X

If a relational-algebra expression E has arity n, then
Px a1, 42, .., any (E)

returns the result of expression £ under the name X,

and with the attributes renamed to Az, A2,, An.

Relational Algebra

» Those are the basic operations

» What about SQL Joins ?

> Compose multiple operators together
Op-clrxs)

» Additional Operations
> Set intersection
> Natural join
° Division

> Assignment

Additional Operators

» Set intersection (n)
o rns=r—(r —s);
o SQL Equivalent: intersect

» Assignment (<)
> A convenient way to right complex RA expressions
> Essentially for creating “temporary” relations

- templ<[]p ¢ (r)

o SQL Equivalent: “create table as...”

Additional Operators: Joins

» Natural join (M)
> A Cartesian product with equality condition on common attributes

> Example:
* if rhas schema R(A, B, C, D), and if s has schema S(E, B, D)
- Common attributes: Band D
* Then:

reas = nr.A, r.B, r.C r.D,s.E (Org=s8rrp=splrxs

» SQL Equivalent:

o selectr.A, r.B, r.C, r.D, s.Efromr, s wherer.B=s.Bandr.D =
s.D, OR

o select * from r natural join s

Additional Operators: Joins

» Equi-join
> A join that only has equality conditions

» Theta-join (g)
° rlgs= Og(rxs)

» Left outer join (IX)
> Say r(A, B), s(B, C)
> We need to somehow find the tuples in r that have no matchins
° Consider: (r— m , ,g(r >s))

> We are done:

(r>ds) U Prempas o (1= 1 5r >s)) X {(NULL)})

Additional Operators: Join Variations
» Tables: r(A, B), s(B, C)

cross product select * fromr, s;
natural join] natural join S)T[r.A, .8,5.c0r8=sa(l X
theta join > g from .. where 0; Og(r x s)
equi-join g (theta must be equality)
left outer join F X S left outer join (with “on”) (see previous slide)
full outer join r X S full outer join (with “on”) —~
(left) semijoin rx s none T, A ra(f DS

(left) antijoin ro> s none r- T p(r >s)

Additional Operators: Division

» Suitable for queries that have “for all”

“opposite of Cartesian product”
txs ©r

°r+s

» Think of it as
cr+s=t |ff
A|B|C|D]|E
al| 1] al|10]| a
ol 1|p|10] a
ol 1]|p]20] b
al| 1|y |[10] b
Bl|2|a|10]| a
Bl2|p |10]| a
Bl2|p|20|b
Bl 2|y |10]|b

@

m

< ™R

10
10
20
10

O T Q0 0

Example Query

» Find the largest salary in the university

o Step 1: find instructor salaries that are less than some other instructor salary
(i.e. not maximum)

* using a copy of instructor under a new name d

) Hinstructor.sa/ary (Ginstructor.salary <d,salary (i nstructor x O d (i nstructor)))

o Step 2: Find the largest salary

’ Hsalary (i nstructor.) - Hinstructor.salary (Oinstructor.salary <d,salary
(instructor x P (instructor)))

Example Queries

» Find the names of all instructors in the Physics
department, along with the course _id of all courses they
have taught

Query 1

ninstructor. ID,course_id (Odept_namez “Physics” (
O instructor.ID=teaches. D (Instructor x teaches)))

Query 2

Hinstructor. ID,course_id (Oinstructor. ID=teaches.ID (

O dept_name="Physics” (INstructor) x teaches))

Outline

» SQL Basics

» Relational Algebra

» Formal Semantics of SQL

Duplicates

» By definition, relations are sets
> So = No duplicates allowed

» Problem:
> Not practical to remove duplicates after every operation
° Why ?

» So...
> SQL by default does not remove duplicates

» SQL follows bag semantics, not set semantics
> Implicitly we keep count of number of copies of each tuple

Formal Semantics of SQL

» RA can only express SELECT DISTINCT queries

« To express SQL, must extend RA to a bag algebra

- Bags (aka: multisets) like sets, but can have duplicates

e.g: {5, 3, 3}
e.g: homes = cname ccity
Johnson Brighton
Smith Perry
Johnson Brighton
Smith R.H.

« Next: will define RA™: a bag version of RA

Formal Semantics of SQL: RA*

1. o*,(r): preserves copiesinr

chame ccity

e —
€.8: O7 ity = Brighton (homes) Johnson | Brighton

Johnson | Brighton

2. ™y an (r): no duplicate elimination

chame

Johnson
Smith
Johnson
Smith

e.g:m* (homes) =

cname

Formal Semantics of SQL: RA*

3. rU*s: additive union

A|B
A|B Al B 1| a
1]a * 2| B _ 1] a
1]a U 3| a 2|8
21B 1| a 218
T 3] a
S 11 a

4. r -*s bag difference
eg: 1r-*s= [AlB s -*r = |[A

Formal Semantics of SQL: RA*

5.r x*s: cartesian product
AlB C AlB|C
1| a x * + = Tlal+
11 a 11al -

11al+

2
P 11al -
AL
2B -

Formal Semantics of SQL

Query:

Semantics:

Query:

SELECT Ay ey ap
FROM Y1y ey I
WHERE P

a1, oan (OF, (O X * o X ¥ 1))

SELECT DISTINCT A1y e oy 3y
FROM iy ey T,
WHERE P

(D

Semantics: wpay is the only operator to change in (1)?

AL an (OF, (0 X F o X% 1))

(2)

Set/Bag Operations Revisited

» Set Operations Bag Operations
> UNION U UNION ALL = U*
o INTERSECT N INTERSECT ALL = N*

EXCEPT ALL

° EXCEPT

Duplicate Counting:

Given m copies of t in 1, n copies of t in s, how many copies of t in:

r UNION ALL s? A: m—+n
r INTERSECT ALL s°? A: min (m, n)

r EXCEPT ALL s°? A: max (0, m-n)

\\\\\\\\

SQL: Summary

Clause Eval Semantics (RA/RAY)
Order
SELECT [(DISTINCT)] 4 m (or m*)
FROM 1 x*
WHERE 2 o
INTO 7 <
GROUP BY 3 Extended relational operator g
HAVING 5 G*
ORDER BY 6 Can’t express: requires ordered
sets, bags
AS - P
UNION ALL 8 U*
UNION U
(similarly intersection,
except)
SO DERRRRRRRRRR T— T ——y

SQL

» Isthatit?
o Unfortunately No
o SQL 3 standard is several hundreds of pages (if not several thousands)
> And expensive too..

» We will discuss a few more constructs along the way
E.g. Embedded SQL, creating indexes etc

» Again, this is what the reference books are for; you just need to
know where to look in the reference book

