CMSC424: Storage and
Indexes

Instructor: Amol Deshpande
amol@cs.umd.edu

Today’s Class

» Storage and Query Processing
> Record storage; Indexes

» Other things

° ELMS Dummy Assignment
- Upload a PDF

> Project 3: due this Friday
- Make sure to go through the Notebook on EXPLAIN

> No laptop use in class (without permission) !!

Databases

e Data Models
e Conceptual representation of the data

e Data Retrieval
e How to ask questions of the database
e How to answer those questions

e Data Storage
e How/where to store data, how to access it

e Data Integrity
e Manage crashes, concurrency
e Manage semantic inconsistencies

° (Y X
Query Processing/Storage
o0
O
userquery l results T « Given a input user query, decide
how to “execute” it
[Query Processing Engine] « Specify sequence of pages to be
brought in memory
» Operate upon the tuples to produce
results
Page pointers
requests to pages T
« Bringing pages from disk to memory
[Buffer Management] « Managing the limited memory
block
requests l data T

How are relations mapped to files?

 How are tuples mapped to disk blocks?

Space Management on
Persistent Storage (e.g., Disks)

] « Storage hierarchy

Outline

e Storage hierarchy
e Disks
e RAID
e File Organization
o Etc....

RAID

e Redundant array of independent disks

e Goal:
Disks are very cheap
Failures are very costly

Use “extra” disks to ensure reliability
If one disk goes down, the data still survives

Also allows faster access to data

e Many raid “levels”
Different reliability and performance properties

RAID Levels e
EiEiEiEi (a) No redundancy.

(a) RAID 0: nonredundant striping

DouEEEE

(b) RAID 1: mirrored disks

(b) Make a copy of the disks.
If one disk goes down, we have a copy.
Reads: Can go to either disk, so higher data rate possible.
Writes: Need to write to both disks.

RAID Levels

SoouEEE

(c) RAID 2: memory-style error-correcting codes

ElFlElslc

(d) RAID 3: bit-interleaved parity

(c) Memory-style Error Correcting

Keep extra bits around so we can reconstruct.

Superceeded by below.

(d) One disk contains “parity” for the main data disks.
Can handle a single disk failure.
Little overhead (only 25% in the above case).

RAID Level 5

e Distributed parity “blocks” instead of bits
e Subsumes Level 4

e Normal operation:
o “Read” directly from the disk. Uses all 5 disks
o “Write”: Need to read and update the parity block

To update 9to 9’

= read 9 and P2

= compute P2’ = P2 xor 9 xor 9’
= write 9’ and P2’

HEEEs

(f) RAID 5: block-interleaved distributed parity

RAID Level 6 1T

e Failure operation (disk 3 has failed)
e “Read block 0”: Read it directly from disk 2
“Read block 1" (which is on disk 3)

Read PO, 0, 2, 3 and compute 1 = PO xor 0 xor 2 xor 3
o “Write”™:

To update 9 to 9’

read 9 and P2
Oh... P2 is on disk 3

So no need to update it
Write 9’

(f) RAID 5: block-interleaved distributed parity

Choosing a RAID level

e Main choice between RAID 1 and RAID 5

e Level 1 better write performance than level 5
Level 5: 2 block reads and 2 block writes to write a single block
Level 1: only requires 2 block writes
Level 1 preferred for high update environments such as log disks

e Level 5 lower storage cost

Level 1 60% more disks

Level 5 is preferred for applications with low update rate,
and large amounts of data

Outline

e Storage hierarchy
e Disks

e RAID

e Buffer Manager

e File Organization
e |[ndexes...

° (Y X
Query Processing/Storage
o0
O
userquery l results T « Given a input user query, decide
how to “execute” it
[Query Processing Engine] « Specify sequence of pages to be
brought in memory
» Operate upon the tuples to produce
results
Page pointers
requests to pages T
« Bringing pages from disk to memory
[Buffer Management] « Managing the limited memory
block
requests l data T

How are relations mapped to files?

 How are tuples mapped to disk blocks?

Space Management on
Persistent Storage (e.g., Disks)

] « Storage hierarchy

Buffer Manager

e \When the QP wants a block, it asks the “buffer manager”

The block must be in memory to operate upon

e Buffer manager:

If block already in memory: return a pointer to it
If not:
Evict a current page
= Either write it to temporary storage,
or write it back to its original location,
= orjust throw it away (if it was read from disk, and not modified)

and make a request to the storage subsystem to fetch it

Buffer Manager 1T

Page Requests from Higher Levels

BUFFER POOL

VN

disk page
"

free frame

MAIN MEMORY

DISK choice of frame dictated
Db by replacement policy

Buffer Manager

e Similar to virtual memory manager
e Buffer replacement policies

What page to evict ?

LRU: Least Recently Used

Throw out the page that was not used in a long time
MRU: Most Recently Used

The opposite

Why ?
Clock ?

An efficient implementation of LRU

Buffer Manager

e Pinning a block

Not allowed to write back to the disk

e Force-output (force-write)

Force the contents of a block to be written to disk

e Order the writes
This block must be written to disk before this block

e Critical for fault tolerant guarantees

Otherwise the database has no control over whats on disk
and whats not on disk

Outline

e Storage hierarchy
e Disks

e RAID

e Buffer Manager

e File Organization
e Efc....

File Organization

e How are the relations mapped to the disk blocks ?

Use a standard file system ?

High-end systems have their own OS/file systems

OS interferes more than helps in many cases
Mapping of relations to file ?

One-to-one ?

Advantages in storing multiple relations clustered together
A file is essentially a collection of disk blocks

How are the tuples mapped to the disk blocks ?

How are they stored within each block

File Organization

e Goals:

Allow insertion/deletions of tuples/records

Fetch a particular record (specified by record id)

Find all tuples that match a condition (say SSN = 123) ?
e Simplest case

Each relation is mapped to a file

A file contains a sequence of records

Each record corresponds to a logical tuple

e Next:
How are tuples/records stored within a block ?

Fixed Length Records

n = number of bytes per record
Store record j at position:

e n*(i—1)

Records may cross blocks

e Not desirable

e Stagger so that that doesn’t happen
Inserting a tuple ?

e Depends on the policy used

e One option: Simply append at the end
of the record

Deletions ?

e Option 1: Rearrange

e Option 2: Keep a free list and use for
next insert

record 0
record 1
record 2
record 3
record 4
record 5
record 6
record 7

record 8

000

000

o0

o
A-102 | Perryridge | 400
A-305 | Round Hill | 350
A-215 | Mianus 700
A-101 | Downtown | 500
A-222 | Redwood 700
A-201 | Perryridge | 900
A-217 | Brighton 750
A-110 | Downtown | 600
A-218 | Perryridge | 700

Fixed Length Records

e Deleting: using “free lists”

header
record 0
record 1
record 2
record 3
record 4
record 5
record 6
record 7
record 8
record 9
record 10
record 11

[T

10101 | Srinivasan | Comp. Sci. | 65000

p
15151 | Mozart Music 40000
22222 | Einstein Physics 95000
33456 | Gold Physics 87000

#
58583 | Califieri History 62000
76543 | Singh Finance 80000
76766 | Crick Biology 72000
83821 | Brandt Comp. Sci. | 92000
98345 | Kim Elec. Eng. 80000

Variable-length Records

Slotted page structure

Block Header Records

Size # Entries

End of Free Space

e [ndirection:
e The records may move inside the page, but the outside world is oblivious to it
° Why ?
The headers are used as a indirection mechanism
Record ID 1000 is the 5th entry in the page number X

File Organization

e \Which block of a file should a record go to ?
Anywhere ?
How to search for “SSN = 123" ?
Called “heap” organization
Sorted by SSN ?
Called “sequential” organization
Keeping it sorted would be painful
How would you search ?
Based on a "hash” key
Called “hashing” organization

Store the record with SSN = x in the block number x%1000

Why ?

Sequential File Organization

e Keep sorted by some search key
e Insertion
Find the block in which the tuple should be
If there is free space, insert it
Otherwise, must create overflow pages
e Deletions
Delete and keep the free space

Databases tend to be insert heavy, so free space gets used
fast

e Can become fragmented

Must reorganize once in a while

Sequential File Organization

e What if | want to find a particular record by value ?
Account info for SSN = 123
e Binary search
Takes log(n) number of disk accesses
Random accesses
Too much
n = 1,000,000,000 -- log(n) = 30
Recall each random access approx 10 ms
300 ms to find just one account information

< 4 requests satisfied per second

Outline

e Storage hierarchy
e Disks

e RAID

e Buffer Manager

e File Organization
e Indexes

o Etc...

Index

e A data structure for efficient search through large databaess
e Two key ideas:

The records are mapped to the disk blocks in specific ways
Sorted, or hash-based
Auxiliary data structures are maintained that allow quick search

e Think library index/catalogue
e Search key:
Attribute or set of attributes used to look up records
E.g. SSN for a persons table
e Two types of indexes
Ordered indexes
Hash-based indexes

Ordered Indexes

e Primary index

e The relation is sorted on the search key of the index
e Secondary index

e ltis not

e Can have only one primary index on a relation

Brighton > A-217 | Brighton 750 ->
Downtown » A-101 | Downtown 500 —P
Mianus — A-110 | Downtown 600 -
Perryridge —-\ A-215 | Mianus 700 _P
Redwood h\—* A-102 | Perryridge 400 —P
Round Hill | - A-201 | Perryridge 900 -.P
A-218 | Perryridge 700 -D
A-222 | Redwood 700 _P
Index A-305 | Round Hill 3b0) _P

Relation

Primary Sparse Index

e Every key doesn’t have to appear in the index

e Allows for very small indexes

o Better chance of fitting in memory

e Tradeoff: Must access the relation file even if the record is not
present

Brighton —>1 A-217 | Brighton 750
Mianus S A-101 | Downtown 500
Redwood \ \ A-110 | Downtown 600
A-215 | Mianus 700
A-102 | Perryridge 400
A-201 | Perryridge 900
A-218 | Perryridge 700
A-222 | Redwood 700
A-305 | Round Hill 350

\VAVAVAVLVAVAVAV,

