CMSC424: Storage and
Indexes

Instructor: Amol Deshpande
amol@cs.umd.edu




Today’s Class

» Storage and Query Processing
° Indexes; B+-Tree

» Other things

> Project 4: due next Friday
- Make sure to go through the posted Notebooks

> No laptop use in class (without permission) !!




Databases

e Data Models
e Conceptual representation of the data

e Data Retrieval
e How to ask questions of the database
e How to answer those questions

e Data Storage
e How/where to store data, how to access it

e Data Integrity
e Manage crashes, concurrency
e Manage semantic inconsistencies



° (Y X
Query Processing/Storage
o0
O
userquery l results T « Given a input user query, decide
how to “execute” it
[ Query Processing Engine ] « Specify sequence of pages to be
brought in memory
» Operate upon the tuples to produce
results
Page pointers
requests to pages T
« Bringing pages from disk to memory
[ Buffer Management ] « Managing the limited memory
block
requests l data T

How are relations mapped to files?

 How are tuples mapped to disk blocks?

Space Management on
Persistent Storage (e.g., Disks)

] « Storage hierarchy




Outline

e Storage hierarchy
e Disks

e RAID

e Buffer Manager

e File Organization
e Indexes

o Etc...




Index

e A data structure for efficient search through large databaess
e Two key ideas:

The records are mapped to the disk blocks in specific ways
Sorted, or hash-based
Auxiliary data structures are maintained that allow quick search

e Think library index/catalogue
e Search key:
Attribute or set of attributes used to look up records
E.g. SSN for a persons table
e Two types of indexes
Ordered indexes
Hash-based indexes



Ordered Indexes

e Primary index

e The relation is sorted on the search key of the index
e Secondary index

e ltis not

e Can have only one primary index on a relation

Brighton > A-217 | Brighton 750 ->
Downtown » A-101 | Downtown 500 —P
Mianus — A-110 | Downtown 600 -
Perryridge —-\ A-215 | Mianus 700 _P
Redwood h\—* A-102 | Perryridge 400 —P
Round Hill | - A-201 | Perryridge 900 -.P
A-218 | Perryridge 700 -D
A-222 | Redwood 700 _P
Index A-305 | Round Hill 3b0) _P

Relation




Primary Sparse Index

e Every key doesn’t have to appear in the index

e Allows for very small indexes

o Better chance of fitting in memory

e Tradeoff: Must access the relation file even if the record is not
present

Brighton —>1 A-217 | Brighton 750
Mianus S A-101 | Downtown 500
Redwood \ \ A-110 | Downtown 600
A-215 | Mianus 700
A-102 | Perryridge 400
A-201 | Perryridge 900
A-218 | Perryridge 700
A-222 | Redwood 700
A-305 | Round Hill 350

\VAVAVAVLVAVAVAV,




Secondary Index

e Relation sorted on branch

e But we want an index on balance

e Must be dense
e Every search key must appear in the index

350

400

500

600

700

750

900

Z
\

A-217 | Brighton 750
A-101 | Downtown | 500
A-110 | Downtown | 600
A-215 | Mianus 700
A-102 | Perryridge | 400
A-201 | Perryridge | 900
A-218 | Perryridge | 700
A-222 | Redwood 700
A-305 | Round Hill | 350

MLVAVAVAVAVAVAVAV




Multi-level Indexes

What if the index itself is too big for
memory ?

Relation size = n = 1,000,000,000
Block size = 100 tuples per block
So, number of pages = 10,000,000

Keeping one entry per page takes too
much space

Solution
e Build an index on the index itself

outer index

index
block 1

inner index




Multi-level Indexes

e How do you search through a multi-level index ?

e \What about keeping the index up-to-date ?

Tuple insertions and deletions
This is a static structure
Need overflow pages to deal with insertions

Works well if no inserts/deletes
Not so good when inserts and deletes are common



Outline

e Storage hierarchy
e Disks

e RAID

e Buffer Manager

e File Organization

e Indexes

e B+-Tree Indexes

o Etc..




Example B+-Tree Index

Index

Perryridge
- |

/

Mianus

l

~,

Redwood

l

~

Brighton Downtown

Mianus

Perryridge

Redwood| |Round Hill



B*-Tree Node Structure

e Typical node

o K, are the search-key values

e P, are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes).

e The search-keys in a node are ordered
Ki<K,<Ky<...<K_,



Properties of B+-Trees

e |tis balanced

Every path from the root to a leaf is same length

e [eaf nodes (at the bottom)

P1 contains the pointers to tuple(s) with key K1

Pn is a pointer to the next leaf node

Must contain at least n/2 entries




Example B+-Tree Index

Index

Perryridge
- |

/

Mianus

l

~,

Redwood

l

~

Brighton Downtown

Brighton

Mianus -

Downtown

Perryridge N

Redwood| |Round Hill

leaf node

T
» A-212 | Brighton 750

» A-101 | Downtown | 500
A-110 | Downtown | 600

account file




Properties

e Interior nodes

o All tuples in the subtree pointed to by P17, have search key < K71
o To find a tuple with key K7’ < K1, follow P1

o Finally, search keys in the tuples contained in the subtree pointed
to by Pn, are all larger than Kn-1

e Must contain at least n/2 entries (unless root)



Example B+-Tree Index

Index

Perryridge
- |

/

Mianus

l

~,

Redwood

l

~

Brighton Downtown

Brighton

Mianus -

Downtown

Perryridge N

Redwood| |Round Hill

leaf node

T
» A-212 | Brighton 750

» A-101 | Downtown | 500
A-110 | Downtown | 600

account file




B+-Trees - Searching

e How to search ?
Follow the pointers

e Logarithmic
logg,,(N), where B = Number of entries per block
B is also called the order of the B+-Tree Index
Typically 100 or so

e If a relation contains1,000,000,000 entries, takes only 4
random accesses
e The top levels are typically in memory

So only requires 1 or 2 random accesses per request



Tuple Insertion

e Find the leaf node where the search key should go

e If already present
Insert record in the file. Update the bucket if necessary
This would be needed for secondary indexes
e If not present
Insert the record in the file
Adjust the index

Add a new (Ki, Pi) pair to the leaf node
Recall the keys in the nodes are sorted

What if there is no space ?



Tuple Insertion

e Splitting a node
Node has too many key-pointer pairs
Needs to store n, only has space for n-1
Split the node into two nodes
Put about half in each

Recursively go up the tree

May result in splitting all the way to the root
In fact, may end up adding a level to the tree

Pseudocode in the book !!



B*-Trees: Insertion 3
o
| Perryridge |
/ \
| Mianus | IRedwood .
l L
Brighton| [Downtown|- | Mianus T |Perryridge »! |Redwood| [Round Hill
. Perryridge .
/ \
Downtown Mianus | Red-wood
Brighton | | Clearview [Downtown -+ | Mianus T |Perryridge T Re;wood IRoundI—Iill

B+-Tree before and after insertion of “Clearview”



Updates on B*-Trees: Deletion

Find the record, delete it.

Remove the corresponding (search-key, pointer) pair from a leaf
node

Note that there might be another tuple with the same search-key

In that case, this is not needed

Issue:
The leaf node now may contain too few entries
Why do we care ?
Solution:
See if you can borrow some entries from a sibling
If all the siblings are also just barely full, then merge (opposite of split)
May end up merging all the way to the root
In fact, may reduce the height of the tree by one



Examples of B*-Tree Deletion 1t
/ / N T
Brighton | | Clearview | 1 Downtown| | |43 | Mianus 4+ [Perryridge| | |4 [Redwood| |[Round Hill

Perrvnclbe
[

O\

Mianus Red“ ood

Clearview Mianus

Brighton

Redwood

Round Hill

|—

Before and after deleting “Downtown

Deleting “Downtown” causes merging of under-full leaves

e leaf node can become empty only for n=3!




Examples of B*-Tree Deletion

: Perryridge
1
Mianus Redwood
| 1
Perryridge

/

Mianus Redwood | |Round Hill

Clearview

Brighton

Mianus | | Perryridge
i 1 N 1

e

Clearview [+—{ | Mianus -+ |Redwood| |Round Hill

Brighton

Deletion of “Perryridge” from result of previous example



Example of B*-tree Deletion

| Perryridge |
/ \
Downtown Mianus | Redwood
Brighton | | Clearview [Downtown » | Mianus » |Perryridge > Regwood Round Hill
. Mianus .
/
|I_|-D0wntown | Perryridge
/ / \
Brighton | | Clearview |13 [Downtown - | Mianus ‘Redwood Round Hill

Before and after deletion of “Perryridge” from earlier example



Another B+Tree Insertion Example
INITIAL TREE
1000 0 0
100 200 300 ‘
L
10 || 20 30 100 || 130 150 200 || 230 | | 240 300 |[330 | | 350

Next slides show the insertion of (125) into this tree
According to the Algorithm in Figure 12.13, Page 495



Another Example: INSERT (125)

Step 1: Split L to create L

1000 0 0

100 200 300

10 |1 20 || 30 200 (| 230 | [ 240 300 || 330 | | 350

L L'

”100||125|| “/ *|130H150|| H

Insert the lowest value in L’ (130) upward into the parent P



Another Example: INSERT (125)

Step 2: Insert (130) into P by creating a temp node T

1000 0 0

Temp Node T
100 130 200 300

10 (|20 || 30 200 || 230 | | 240

L L

||100||125H || ||130||150|| H

300 || 330

350



Another Example: INSERT (125) 0ecs

Step 3: Create P’; distribute from T into P and P’

1000 0 0

New P has only 1 key, but two pointers so it is OKAY.
This follows the last 4 lines of Figure 12.13 (note that “‘n” = 4)
K” = 130. Insert upward into the root



Another Example: INSERT (125) 0ecs

Step 4: Insert (130) into the parent (R); create R’

130 Ilﬁ0||ﬂ0| Ig ||

100 200 300

10 (| 20 || 30

||100||125H H’ *|130||150H H

Once agqain following the insert _in_parent() procedure, K”= 1000



Another Example: INSERT (125) 0ecs

Step 5: Create a new root

1000

130 0

100

10 || 20

100 125 130 || 150



B+ Trees in Practice

e Typical order: 100. Typical fill-factor: 67%.
average fanout = 133

e Typical capacities:
Height 3: 1333 = 2,352,637 entries
Height 4: 1334 = 312,900,700 entries

e Can often hold top levels in buffer pool:
Level 1 = 1 page = 8 Kbytes
Level 2= 133 pages= 1 Mbyte
Level 3 = 17,689 pages = 133 MBytes



B+ Trees: Summary

e Searching:

log,4(n) — Where d is the order, and n is the number of entries
e Insertion:

Find the leaf to insert into

If full, split the node, and adjust index accordingly

Similar cost as searching
e Deletion

Find the leaf node

Delete
May not remain half-full; must adjust the index accordingly



More...

e Primary vs Secondary Indexes
e More B+-Trees

e Hash-based Indexes
Static Hashing
Extendible Hashing
Linear Hashing

e Grid-files
e R-Trees
e efc...




Secondary Index

e If relation not sorted by search key, called a secondary index
e Not all tuples with the same search key will be together
e Searching is more expensive

Downtown

Brighton

Downtown

Mianus

Perryridge

Perryridge

Perryridge
Redwood

Round Hill

MAVAVAVAVAVAVAVAV,




B+-Tree File Organization

e Store the records at the leaves
e Sorted order efc..




B-Tree

e Predates

e Different treatment of search keys
e Less storage

e Significantly harder to implement
e Not used.




Hash-based File Organization

Store record with search key k (1000, “A’,..) Block 0
in block number h(k) (200, “B”,...)

. (4044, “C”, ...)
e.g. for a person file,

h(SSN) = SSN % 4 (401, “AX"....) Block

(21, “Bx”,...) ‘\
Blocks called “buckets”

Buckets
What if the block becomes full ? (1002, “Ay”,...) M

Overflow pages (10, “By”,...)
Uniformity property: Block 3
Don’t want all tuples to map to (1003, “Az",...)
the same bucket (35, “BZ’,...)

h(SSN) = SSN % 2 would be bad




Hash-based File Organization

Hashed on “branch-name”

Hash function:
a=1,b=2.,z=26
h(abz)

=(1+2+26) % 10
=9

000
000
o0
o
bucket 0 bucket 5
A-102 | Perryridge 400
A-201 | Perryridge 900
A-218 Perryridge 700
bucket 1 bucket 6
bucket 2 bucket 7
A-215 Mianus 700
bucket 3 bucket 8
A-217 Brighton 750 A-101 Downtown 500
A-305 Round Hill 350 A-110 Downtown 600
bucket 4 bucket 9
A-222 Redwood 700




Hash Indexes

bucket 0

Extends the basic idea

bucket 1

A-215

Brighton

Search: 05

Downtown

Find the block with bucket 2

Downtown

A-101

Mianus

search key 110

Perryridge

Follow the pointer bucket 3

Perryridge

A-217

Perryridge

A-102

Redwood

Range SearCh r) bucket 4

Round Hill

a<X<b? A218

bucket 5

bucket 6

A-222




Hash Indexes

e Very fast search on equality

e Can’t search for “ranges” at all

Must scan the file

e Inserts/Deletes

Overflow pages can degrade the performance

e [wo approaches

Dynamic hashing

Extendible hashing



Grid Files e

Stores pointers to tuples with :

branch-name between Mianus
Multidimensional index structure and Perryridge

Can handle: X=x7Tand Y = y1 and balance < 1k

a<X<bandc<Y<d

Townsend

Perryridge

Mianus

Central

Linear scale for
branch-name

0

Grid Array

Buckets

Linear scale for balance




R-Trees

For spatial data (e.g. maps, rectangles, GPS data etc)




Conclusions

e I[ndexing Goal: “Quickly find the tuples that match certain
conditions”

e Equality and range queries most common

Hence B+-Trees the predominant structure for on-disk
representation

Hashing is used more commonly for in-memory operations
e Many many more types of indexing structures exist
For different types of data

For different types of queries

E.g. “nearest-neighbor” queries



