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}  Storage	  and	  Query	  Processing	  
◦  Indexes;	  B+-‐Tree	  

}  Other	  things	  
◦  Project	  4:	  due	  next	  Friday	  
�  Make	  sure	  to	  go	  through	  the	  posted	  Notebooks	  

◦  No	  laptop	  use	  in	  class	  (without	  permission)	  !!	  



l  Data	  Models	  
l  Conceptual	  representaOon	  of	  the	  data	  

l  Data	  Retrieval	  
l  How	  to	  ask	  quesOons	  of	  the	  database	  
l  How	  to	  answer	  those	  quesOons	  

l  Data	  Storage	  
l  How/where	  to	  store	  data,	  how	  to	  access	  it	  

l  Data	  Integrity	  
l  Manage	  crashes,	  concurrency	  
l  Manage	  semanOc	  inconsistencies	  

Databases 



Query Processing/Storage 

Space Management on 
Persistent Storage (e.g., Disks) 

Buffer Management 

Query Processing Engine 

 
 
 

•  Storage hierarchy 
•  How are relations mapped to files? 
•  How are tuples mapped to disk blocks? 

•  Bringing pages from disk to memory 
•  Managing the limited memory 

•  Given a input user query, decide 
how to “execute” it 

•  Specify sequence of pages to be 
brought in memory 

•  Operate upon the tuples to produce 
results 

user query 

page 
requests 

block 
requests 

results 

pointers 
to pages 

data 



Outline 

l  Storage hierarchy 
l  Disks 
l  RAID 
l  Buffer Manager 
l  File Organization 
l  Indexes 
l  Etc… 



Index 

l  A data structure for efficient search through large databaess 
l  Two key ideas: 

l  The records are mapped to the disk blocks in specific ways 
l  Sorted, or hash-based 

l  Auxiliary data structures are maintained that allow quick search 
l  Think library index/catalogue 
l  Search key: 

l  Attribute or set of attributes used to look up records 
l  E.g. SSN for a persons table 

l  Two types of indexes 
l  Ordered indexes 
l  Hash-based indexes   



Ordered Indexes 

l  Primary index 
l  The relation is sorted on the search key of the index 

l  Secondary index 
l  It is not 

l  Can have only one primary index on a relation 

Relation 
Index 



Primary Sparse Index 

l  Every key doesn’t have to appear in the index 
l  Allows for very small indexes 

l  Better chance of fitting in memory 
l  Tradeoff: Must access the relation file even if the record is not 

present 



Secondary Index 
l  Relation sorted on branch 
l  But we want an index on balance 
l  Must be dense 

l  Every search key must appear in the index 



Multi-level Indexes 

l  What if the index itself is too big for 
memory ? 

l  Relation size = n = 1,000,000,000 
l  Block size = 100 tuples per block 
l  So, number of pages = 10,000,000 
l  Keeping one entry per page takes too 

much space 
l  Solution 

l  Build an index on the index itself 



Multi-level Indexes 

l  How do you search through a multi-level index ? 

l  What about keeping the index up-to-date ? 
l  Tuple insertions and deletions 

l  This is a static structure 
l  Need overflow pages to deal with insertions 

l  Works well if no inserts/deletes 
l  Not so good when inserts and deletes are common 



Outline 

l  Storage hierarchy 
l  Disks 
l  RAID 
l  Buffer Manager 
l  File Organization 
l  Indexes 
l  B+-Tree Indexes 
l  Etc.. 



Example B+-Tree Index 

Index 



B+-Tree Node Structure 

l  Typical node 
 
 
 
l  Ki are the search-key values  

l  Pi are pointers to children (for non-leaf nodes) or pointers to 
records or buckets of records (for leaf nodes). 

l  The search-keys in a node are ordered  

   K1 < K2 < K3 < . . . < Kn–1 
 

 

 



Properties of B+-Trees 

l  It is balanced 
l  Every path from the root to a leaf is same length 

l  Leaf nodes (at the bottom) 
l  P1 contains the pointers to tuple(s) with key K1 

l  … 
l  Pn is a pointer to the next leaf node 
l  Must contain at least n/2 entries 



Example B+-Tree Index 

Index 



Properties 

l  Interior nodes 

l  All tuples in the subtree pointed to by P1, have search key < K1 

l  To find a tuple with key K1’ < K1, follow P1 

l  … 

l  Finally, search keys in the tuples contained in the subtree pointed 
to by Pn, are all larger than Kn-1 

l  Must contain at least n/2 entries (unless root) 



Example B+-Tree Index 

Index 



B+-Trees - Searching 

l  How to search ? 
l  Follow the pointers 

l  Logarithmic 
l  logB/2(N), where B = Number of entries per block 
l  B is also called the order of the B+-Tree Index 

l  Typically 100 or so 

l  If a relation contains1,000,000,000 entries, takes only 4 

random accesses 

l  The top levels are typically in memory 

l  So only requires 1 or 2 random accesses per request 



Tuple Insertion 

l  Find the leaf node where the search key should go 
l  If already present  

l  Insert record in the file. Update the bucket if necessary 
l  This would be needed for secondary indexes 

l  If not present 
l  Insert the record in the file 
l  Adjust the index 

l  Add a new (Ki, Pi) pair to the leaf node  
l  Recall the keys in the nodes are sorted 

l  What if there is no space ? 



Tuple Insertion 

l  Splitting a node 
l  Node has too many key-pointer pairs 

l  Needs to store n, only has space for n-1 

l  Split the node into two nodes 
l  Put about half in each 

l  Recursively go up the tree 
l  May result in splitting all the way to the root 
l  In fact, may end up adding a level to the tree 

l  Pseudocode in the book !! 



B+-Trees:  Insertion 

B+-Tree before and after insertion of “Clearview”



Updates on B+-Trees: Deletion 
l  Find the record, delete it. 
l  Remove the corresponding (search-key, pointer) pair from a leaf 

node 
l  Note that there might be another tuple with the same search-key 
l  In that case, this is not needed 

l  Issue: 
l  The leaf node now may contain too few entries 

l  Why do we care ? 
l  Solution: 

1.  See if you can borrow some entries from a sibling 
2.  If all the siblings are also just barely full, then merge (opposite of split) 

l  May end up merging all the way to the root 
l  In fact, may reduce the height of the tree by one 



Examples of B+-Tree Deletion 

l  Deleting “Downtown” causes merging of under-full leaves 
l   leaf node can become empty only for n=3! 

Before and after deleting “Downtown”



Examples of B+-Tree Deletion 

Deletion of “Perryridge” from result of previous example



Example of B+-tree Deletion  

Before and after deletion of “Perryridge” from earlier example



Another B+Tree Insertion Example 

INITIAL TREE 

Next slides show the insertion of (125) into this tree 
According to the Algorithm in Figure 12.13, Page 495 



Another Example: INSERT (125) 

Step 1: Split L to create L’ 

Insert the lowest value in L’ (130) upward into the parent P 



Another Example: INSERT (125) 

Step 2: Insert (130) into P by creating a temp node T 



Another Example: INSERT (125) 

Step 3: Create P’; distribute from T into P and P’ 

New P has only 1 key, but two pointers so it is OKAY. 
This follows the last 4 lines of Figure 12.13 (note that “n” = 4) 
K’’ = 130. Insert upward into the root  



Another Example: INSERT (125) 

Step 4: Insert (130) into the parent (R); create R’ 

Once again following the insert_in_parent() procedure, K’’ = 1000 



Another Example: INSERT (125) 

Step 5: Create a new root 



B+ Trees in Practice 

l  Typical order: 100.  Typical fill-factor: 67%. 
l  average fanout = 133 

l  Typical capacities: 
l  Height 3: 1333 =     2,352,637 entries 
l  Height 4: 1334 = 312,900,700 entries 

l  Can often hold top levels in buffer pool: 
l  Level 1 =           1 page  =     8 Kbytes 
l  Level 2 =      133 pages =     1 Mbyte 
l  Level 3 = 17,689 pages = 133 MBytes        



B+ Trees: Summary   

l  Searching: 
l  logd(n) – Where d is the order, and n is the number of entries 

l  Insertion: 
l  Find the leaf to insert into 
l  If full, split the node, and adjust index accordingly 
l  Similar cost as searching 

l  Deletion 
l  Find the leaf node 
l  Delete 
l  May not remain half-full; must adjust the index accordingly 



More… 

l  Primary vs Secondary Indexes 
l  More B+-Trees 
l  Hash-based Indexes 

l  Static Hashing 
l  Extendible Hashing 
l  Linear Hashing 

l  Grid-files 
l  R-Trees  
l  etc… 



Secondary Index 

l  If relation not sorted by search key, called a secondary index 
l  Not all tuples with the same search key will be together 
l  Searching is more expensive 



B+-Tree File Organization 

l  Store the records at the leaves 
l  Sorted order etc.. 



B-Tree 

l  Predates 
l  Different treatment of search keys 
l  Less storage 
l  Significantly harder to implement 
l  Not used. 



Hash-based File Organization 

Store record with search key k 
in block number h(k)  
 
e.g. for a person file, 
       h(SSN) = SSN % 4 
 
Blocks called “buckets” 
 
What if the block becomes full ? 
      Overflow pages 
 
Uniformity property: 
    Don’t want all tuples to map to  
        the same bucket 
    h(SSN) = SSN % 2 would be bad 

(1000, “A”,…) 
(200, “B”,…) 
(4044, “C”, …) 

(401, “Ax”,…) 
(21, “Bx”,…) 
 

(1002, “Ay”,…) 
(10, “By”,…) 
 

(1003, “Az”,…) 
(35, “Bz”,…) 
 

Block 0 

Block 1 

Block 2 

Block 3 

Buckets 



Hashed on “branch-name” 
 
Hash function: 
     a = 1, b = 2, .., z = 26 
     h(abz)  
        = (1 + 2 + 26) % 10 
        = 9 

Hash-based File Organization 



Hash Indexes 

Extends the basic idea 
 
Search: 
   Find the block with    
               search key 
   Follow the pointer 
 
Range search ? 
      a < X < b ? 



Hash Indexes 

l  Very fast search on equality 

l  Can’t search for “ranges” at all 
l  Must scan the file 

l  Inserts/Deletes   
l  Overflow pages can degrade the performance 

l  Two approaches 
l  Dynamic hashing 

l  Extendible hashing 



Grid Files 
Multidimensional index structure 
Can handle:  X = x1 and Y = y1 
                     a < X < b and c < Y < d 

Stores pointers to tuples with : 
    branch-name between Mianus  
                              and Perryridge 
    and balance < 1k 



R-Trees 

For spatial data (e.g. maps, rectangles, GPS data etc) 



Conclusions 

l  Indexing Goal: “Quickly find the tuples that match certain 
conditions” 

l  Equality and range queries most common 

l  Hence B+-Trees the predominant structure for on-disk 
representation 

l  Hashing is used more commonly for in-memory operations 

l  Many many more types of indexing structures exist 

l  For different types of data 

l  For different types of queries 
l  E.g. “nearest-neighbor” queries 


