
Instructor:	 Amol	 Deshpande	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 amol@cs.umd.edu	

}  Storage	 and	 Query	 Processing	
◦  Indexes;	 B+-‐Tree	

}  Other	 things	
◦  Project	 4:	 due	 next	 Friday	
�  Make	 sure	 to	 go	 through	 the	 posted	 Notebooks	

◦  No	 laptop	 use	 in	 class	 (without	 permission)	 !!	

l  Data	 Models	
l  Conceptual	 representaOon	 of	 the	 data	

l  Data	 Retrieval	
l  How	 to	 ask	 quesOons	 of	 the	 database	
l  How	 to	 answer	 those	 quesOons	

l  Data	 Storage	
l  How/where	 to	 store	 data,	 how	 to	 access	 it	

l  Data	 Integrity	
l  Manage	 crashes,	 concurrency	
l  Manage	 semanOc	 inconsistencies	

Databases

Query Processing/Storage

Space Management on
Persistent Storage (e.g., Disks)

Buffer Management

Query Processing Engine

•  Storage hierarchy
•  How are relations mapped to files?
•  How are tuples mapped to disk blocks?

•  Bringing pages from disk to memory
•  Managing the limited memory

•  Given a input user query, decide
how to “execute” it

•  Specify sequence of pages to be
brought in memory

•  Operate upon the tuples to produce
results

user query

page
requests

block
requests

results

pointers
to pages

data

Outline

l  Storage hierarchy
l  Disks
l  RAID
l  Buffer Manager
l  File Organization
l  Indexes
l  Etc…

Index

l  A data structure for efficient search through large databaess
l  Two key ideas:

l  The records are mapped to the disk blocks in specific ways
l  Sorted, or hash-based

l  Auxiliary data structures are maintained that allow quick search
l  Think library index/catalogue
l  Search key:

l  Attribute or set of attributes used to look up records
l  E.g. SSN for a persons table

l  Two types of indexes
l  Ordered indexes
l  Hash-based indexes

Ordered Indexes

l  Primary index
l  The relation is sorted on the search key of the index

l  Secondary index
l  It is not

l  Can have only one primary index on a relation

Relation
Index

Primary Sparse Index

l  Every key doesn’t have to appear in the index
l  Allows for very small indexes

l  Better chance of fitting in memory
l  Tradeoff: Must access the relation file even if the record is not

present

Secondary Index
l  Relation sorted on branch
l  But we want an index on balance
l  Must be dense

l  Every search key must appear in the index

Multi-level Indexes

l  What if the index itself is too big for
memory ?

l  Relation size = n = 1,000,000,000
l  Block size = 100 tuples per block
l  So, number of pages = 10,000,000
l  Keeping one entry per page takes too

much space
l  Solution

l  Build an index on the index itself

Multi-level Indexes

l  How do you search through a multi-level index ?

l  What about keeping the index up-to-date ?
l  Tuple insertions and deletions

l  This is a static structure
l  Need overflow pages to deal with insertions

l  Works well if no inserts/deletes
l  Not so good when inserts and deletes are common

Outline

l  Storage hierarchy
l  Disks
l  RAID
l  Buffer Manager
l  File Organization
l  Indexes
l  B+-Tree Indexes
l  Etc..

Example B+-Tree Index

Index

B+-Tree Node Structure

l  Typical node

l  Ki are the search-key values

l  Pi are pointers to children (for non-leaf nodes) or pointers to
records or buckets of records (for leaf nodes).

l  The search-keys in a node are ordered

 K1 < K2 < K3 < . . . < Kn–1

Properties of B+-Trees

l  It is balanced
l  Every path from the root to a leaf is same length

l  Leaf nodes (at the bottom)
l  P1 contains the pointers to tuple(s) with key K1

l  …
l  Pn is a pointer to the next leaf node
l  Must contain at least n/2 entries

Example B+-Tree Index

Index

Properties

l  Interior nodes

l  All tuples in the subtree pointed to by P1, have search key < K1

l  To find a tuple with key K1’ < K1, follow P1

l  …

l  Finally, search keys in the tuples contained in the subtree pointed
to by Pn, are all larger than Kn-1

l  Must contain at least n/2 entries (unless root)

Example B+-Tree Index

Index

B+-Trees - Searching

l  How to search ?
l  Follow the pointers

l  Logarithmic
l  logB/2(N), where B = Number of entries per block
l  B is also called the order of the B+-Tree Index

l  Typically 100 or so

l  If a relation contains1,000,000,000 entries, takes only 4

random accesses

l  The top levels are typically in memory

l  So only requires 1 or 2 random accesses per request

Tuple Insertion

l  Find the leaf node where the search key should go
l  If already present

l  Insert record in the file. Update the bucket if necessary
l  This would be needed for secondary indexes

l  If not present
l  Insert the record in the file
l  Adjust the index

l  Add a new (Ki, Pi) pair to the leaf node
l  Recall the keys in the nodes are sorted

l  What if there is no space ?

Tuple Insertion

l  Splitting a node
l  Node has too many key-pointer pairs

l  Needs to store n, only has space for n-1

l  Split the node into two nodes
l  Put about half in each

l  Recursively go up the tree
l  May result in splitting all the way to the root
l  In fact, may end up adding a level to the tree

l  Pseudocode in the book !!

B+-Trees: Insertion

B+-Tree before and after insertion of “Clearview”

Updates on B+-Trees: Deletion
l  Find the record, delete it.
l  Remove the corresponding (search-key, pointer) pair from a leaf

node
l  Note that there might be another tuple with the same search-key
l  In that case, this is not needed

l  Issue:
l  The leaf node now may contain too few entries

l  Why do we care ?
l  Solution:

1.  See if you can borrow some entries from a sibling
2.  If all the siblings are also just barely full, then merge (opposite of split)

l  May end up merging all the way to the root
l  In fact, may reduce the height of the tree by one

Examples of B+-Tree Deletion

l  Deleting “Downtown” causes merging of under-full leaves
l  leaf node can become empty only for n=3!

Before and after deleting “Downtown”

Examples of B+-Tree Deletion

Deletion of “Perryridge” from result of previous example

Example of B+-tree Deletion

Before and after deletion of “Perryridge” from earlier example

Another B+Tree Insertion Example

INITIAL TREE

Next slides show the insertion of (125) into this tree
According to the Algorithm in Figure 12.13, Page 495

Another Example: INSERT (125)

Step 1: Split L to create L’

Insert the lowest value in L’ (130) upward into the parent P

Another Example: INSERT (125)

Step 2: Insert (130) into P by creating a temp node T

Another Example: INSERT (125)

Step 3: Create P’; distribute from T into P and P’

New P has only 1 key, but two pointers so it is OKAY.
This follows the last 4 lines of Figure 12.13 (note that “n” = 4)
K’’ = 130. Insert upward into the root

Another Example: INSERT (125)

Step 4: Insert (130) into the parent (R); create R’

Once again following the insert_in_parent() procedure, K’’ = 1000

Another Example: INSERT (125)

Step 5: Create a new root

B+ Trees in Practice

l  Typical order: 100. Typical fill-factor: 67%.
l  average fanout = 133

l  Typical capacities:
l  Height 3: 1333 = 2,352,637 entries
l  Height 4: 1334 = 312,900,700 entries

l  Can often hold top levels in buffer pool:
l  Level 1 = 1 page = 8 Kbytes
l  Level 2 = 133 pages = 1 Mbyte
l  Level 3 = 17,689 pages = 133 MBytes

B+ Trees: Summary

l  Searching:
l  logd(n) – Where d is the order, and n is the number of entries

l  Insertion:
l  Find the leaf to insert into
l  If full, split the node, and adjust index accordingly
l  Similar cost as searching

l  Deletion
l  Find the leaf node
l  Delete
l  May not remain half-full; must adjust the index accordingly

More…

l  Primary vs Secondary Indexes
l  More B+-Trees
l  Hash-based Indexes

l  Static Hashing
l  Extendible Hashing
l  Linear Hashing

l  Grid-files
l  R-Trees
l  etc…

Secondary Index

l  If relation not sorted by search key, called a secondary index
l  Not all tuples with the same search key will be together
l  Searching is more expensive

B+-Tree File Organization

l  Store the records at the leaves
l  Sorted order etc..

B-Tree

l  Predates
l  Different treatment of search keys
l  Less storage
l  Significantly harder to implement
l  Not used.

Hash-based File Organization

Store record with search key k
in block number h(k)

e.g. for a person file,
 h(SSN) = SSN % 4

Blocks called “buckets”

What if the block becomes full ?
 Overflow pages

Uniformity property:
 Don’t want all tuples to map to
 the same bucket
 h(SSN) = SSN % 2 would be bad

(1000, “A”,…)
(200, “B”,…)
(4044, “C”, …)

(401, “Ax”,…)
(21, “Bx”,…)

(1002, “Ay”,…)
(10, “By”,…)

(1003, “Az”,…)
(35, “Bz”,…)

Block 0

Block 1

Block 2

Block 3

Buckets

Hashed on “branch-name”

Hash function:
 a = 1, b = 2, .., z = 26
 h(abz)
 = (1 + 2 + 26) % 10
 = 9

Hash-based File Organization

Hash Indexes

Extends the basic idea

Search:
 Find the block with
 search key
 Follow the pointer

Range search ?
 a < X < b ?

Hash Indexes

l  Very fast search on equality

l  Can’t search for “ranges” at all
l  Must scan the file

l  Inserts/Deletes
l  Overflow pages can degrade the performance

l  Two approaches
l  Dynamic hashing

l  Extendible hashing

Grid Files
Multidimensional index structure
Can handle: X = x1 and Y = y1
 a < X < b and c < Y < d

Stores pointers to tuples with :
 branch-name between Mianus
 and Perryridge
 and balance < 1k

R-Trees

For spatial data (e.g. maps, rectangles, GPS data etc)

Conclusions

l  Indexing Goal: “Quickly find the tuples that match certain
conditions”

l  Equality and range queries most common

l  Hence B+-Trees the predominant structure for on-disk
representation

l  Hashing is used more commonly for in-memory operations

l  Many many more types of indexing structures exist

l  For different types of data

l  For different types of queries
l  E.g. “nearest-neighbor” queries

