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Client-Server Systems

■  Database functionality can be divided into:
●  Back-end: manages access structures, query evaluation and 

optimization, concurrency control and recovery.
●  Front-end: consists of tools such as forms, report-writers, and 

graphical user interface facilities.
■  The interface between the front-end and the back-end is through SQL or 

through an application program interface.
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Parallel Databases

■  Why ?
ê More transactions per second, or less time per query
ê Throughput vs. Response Time
ê Speedup vs. Scaleup

■  Database operations are embarrassingly parallel
ê E.g. Consider a join between R and S on R.b = S.b 

■  But, perfect speedup doesn’t happen
ê Start-up costs
ê  Interference
ê Skew 
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Parallel Systems

■  Parallel database systems consist of multiple processors and multiple 
disks connected by a fast interconnection network.

■  A coarse-grain parallel machine consists of a small number of 
powerful processors

■  A massively parallel or fine grain parallel machine utilizes 
thousands of smaller processors.

■  Two main performance measures:
●  throughput --- the number of tasks that can be completed in a 

given time interval
●  response time --- the amount of time it takes to complete a single 

task from the time it is submitted
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Speed-Up and Scale-Up
■  Speedup: a fixed-sized problem executing on a small system is given 

to a system which is N-times larger.
●  Measured by:
     speedup = small system elapsed time
                       large system elapsed time
●  Speedup is linear if equation equals N.

■  Scaleup: increase the size of both the problem and the system
●  N-times larger system used to perform N-times larger job
●  Measured by:
     scaleup = small system small problem elapsed time
                         big system big problem elapsed time 
●  Scale up is linear if equation equals 1.
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Factors Limiting Speedup and Scaleup

Speedup and scaleup are often sublinear due to:
■  Startup costs: Cost of starting up multiple processes may dominate 

computation time, if the degree of parallelism is high.
■  Interference:  Processes accessing shared resources (e.g., system 

bus, disks, or locks) compete with each other, thus spending time 
waiting on other processes, rather than performing useful work.

■  Skew: Increasing the degree of parallelism increases the variance in 
service times of parallely executing tasks.  Overall execution time 
determined by slowest of parallely executing tasks.



Parallel Databases

■  Shared-nothing vs. shared-memory vs. shared-disk
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Distributed Systems
■  Over a wide area network
■  Typically not done for performance reasons

ê  For that, use a parallel system

■  Done because of necessity
ê  Imagine a large corporation with offices all over the world
ê  Also, for redundancy and for disaster recovery reasons

■  Lot of headaches
ê  Especially if trying to execute transactions that involve data from multiple sites

Ø  Keeping the databases in sync
–   2-phase commit for transactions uniformly hated

Ø  Autonomy issues
–  Even within an organization, people tend to be protective of their unit/

department
Ø  Locks/Deadlock management

ê  Works better for query processing
Ø  Since we are only reading the data



MapReduce Framework
■  Provides a fairly restricted, but still powerful abstraction for programming

■  Programmers write a pipeline of functions, called map or reduce
ê map programs

Ø  inputs: a list of “records” (record defined arbitrarily – could be images, 
genomes etc…)

Ø  output: for each record, produce a set of “(key, value)” pairs

ê  reduce programs
Ø  input: a list of “(key, {values})” grouped together from the mapper
Ø  output: whatever

ê Both can do arbitrary computations on the input data as long as the basic 
structure is followed



MapReduce Framework
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Word Count Example

for a rewrite of our production indexing system. Sec-
tion 7 discusses related and future work.

2 Programming Model

The computation takes a set of input key/value pairs, and
produces a set of output key/value pairs. The user of
the MapReduce library expresses the computation as two
functions: Map and Reduce.
Map, written by the user, takes an input pair and pro-
duces a set of intermediate key/value pairs. The MapRe-
duce library groups together all intermediate values asso-
ciated with the same intermediate key I and passes them
to the Reduce function.
The Reduce function, also written by the user, accepts
an intermediate key I and a set of values for that key. It
merges together these values to form a possibly smaller
set of values. Typically just zero or one output value is
produced per Reduce invocation. The intermediate val-
ues are supplied to the user’s reduce function via an iter-
ator. This allows us to handle lists of values that are too
large to fit in memory.

2.1 Example
Consider the problem of counting the number of oc-
currences of each word in a large collection of docu-
ments. The user would write code similar to the follow-
ing pseudo-code:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

The map function emits each word plus an associated
count of occurrences (just ‘1’ in this simple example).
The reduce function sums together all counts emitted
for a particular word.
In addition, the user writes code to fill in a mapreduce
specification object with the names of the input and out-
put files, and optional tuning parameters. The user then
invokes the MapReduce function, passing it the specifi-
cation object. The user’s code is linked together with the
MapReduce library (implemented in C++). Appendix A
contains the full program text for this example.

2.2 Types

Even though the previous pseudo-code is written in terms
of string inputs and outputs, conceptually the map and
reduce functions supplied by the user have associated
types:
map (k1,v1) → list(k2,v2)
reduce (k2,list(v2)) → list(v2)

I.e., the input keys and values are drawn from a different
domain than the output keys and values. Furthermore,
the intermediate keys and values are from the same do-
main as the output keys and values.
Our C++ implementation passes strings to and from
the user-defined functions and leaves it to the user code
to convert between strings and appropriate types.

2.3 More Examples

Here are a few simple examples of interesting programs
that can be easily expressed as MapReduce computa-
tions.

Distributed Grep: The map function emits a line if it
matches a supplied pattern. The reduce function is an
identity function that just copies the supplied intermedi-
ate data to the output.

Count of URL Access Frequency: The map func-
tion processes logs of web page requests and outputs
⟨URL,1⟩. The reduce function adds together all values
for the same URL and emits a ⟨URL,total count⟩
pair.

Reverse Web-Link Graph: The map function outputs
⟨target,source⟩ pairs for each link to a target
URL found in a page named source. The reduce
function concatenates the list of all source URLs as-
sociated with a given target URL and emits the pair:
⟨target, list(source)⟩

Term-Vector per Host: A term vector summarizes the
most important words that occur in a document or a set
of documents as a list of ⟨word, frequency⟩ pairs. The
map function emits a ⟨hostname,term vector⟩
pair for each input document (where the hostname is
extracted from the URL of the document). The re-
duce function is passed all per-document term vectors
for a given host. It adds these term vectors together,
throwing away infrequent terms, and then emits a final
⟨hostname,term vector⟩ pair.

To appear in OSDI 2004 2



MapReduce Framework: Word Count
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More Efficient Word Count
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Called “mapper-side” combiner
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Chapter 18: Parallel Databases

■  Introduction
■  I/O Parallelism
■  Interquery Parallelism
■  Intraquery Parallelism
■  Intraoperation Parallelism
■  Interoperation Parallelism
■  Design of Parallel Systems



©Silberschatz, Korth and Sudarshan18.18Database System Concepts - 6th Edition

Introduction

■  Parallel machines are becoming quite common and affordable
●  Prices of microprocessors, memory and disks have dropped 

sharply
●  Recent desktop computers feature multiple processors and this 

trend is projected to accelerate
■  Databases are growing increasingly large

●  large volumes of transaction data are collected and stored for later 
analysis.

●  multimedia objects like images are increasingly stored in 
databases

■  Large-scale parallel database systems increasingly used for:
●  storing large volumes of data
●  processing time-consuming decision-support queries
●  providing high throughput for transaction processing 



©Silberschatz, Korth and Sudarshan18.19Database System Concepts - 6th Edition

Parallelism in Databases

■  Data can be partitioned across multiple disks for parallel I/O.
■  Individual relational operations (e.g., sort, join, aggregation) can be 

executed in parallel
●  data can be partitioned and each processor can work 

independently on its own partition.
■  Queries are expressed in high level language (SQL, translated to 

relational algebra)
●  makes parallelization easier.

■  Different queries can be run in parallel with each other.     
Concurrency control takes care of conflicts. 

■  Thus, databases naturally lend themselves to parallelism.



©Silberschatz, Korth and Sudarshan18.20Database System Concepts - 6th Edition

I/O Parallelism

■  Reduce the time required to retrieve relations from disk by partitioning
■  The relations on multiple disks.
■  Horizontal partitioning – tuples of a relation are divided among many 

disks such that each tuple resides on one disk.
■  Partitioning techniques (number of disks = n):

Round-robin: 
Send the I th tuple inserted in the relation to disk i mod n.  

Hash partitioning:  
●  Choose one or more attributes as the partitioning attributes.   
●   Choose hash function h with range 0…n - 1
●  Let i denote result of hash function h applied tothe partitioning 

attribute value of a tuple. Send tuple to disk i.
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I/O Parallelism (Cont.)

■  Partitioning techniques (cont.):
■  Range partitioning: 

●  Choose an attribute as the partitioning attribute.
●  A partitioning vector [vo, v1, ..., vn-2]  is chosen.
●  Let v be the partitioning attribute value of a tuple. Tuples such that 

vi ≤ vi+1 go to disk I + 1. Tuples with v < v0 go to disk 0 and tuples 
with v ≥ vn-2 go to disk n-1.

     E.g., with a partitioning vector [5,11], a tuple with partitioning 
attribute value of 2 will go to disk 0, a tuple with value 8 will go to 
disk 1, while a  tuple with value 20 will go to disk2.
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Comparison of Partitioning Techniques

■  Evaluate how well partitioning techniques support the following types 
of data access:

     1.  Scanning the entire relation.
     2.  Locating a tuple associatively – point queries.

●  E.g., r.A = 25.
     3.  Locating all tuples such that the value of a given attribute lies within  

a specified range – range queries.
●  E.g.,  10 ≤ r.A < 25.
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Comparison of Partitioning Techniques (Cont.)

Round robin:
■  Advantages

●   Best suited for sequential scan of entire relation on each query.
●  All disks have almost an equal number of tuples; retrieval work is 

thus well balanced between disks.
■  Range queries are difficult to process

●  No clustering -- tuples are scattered across all disks
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Hash partitioning:
■   Good for sequential access 

●  Assuming hash function is good, and partitioning attributes form a 
key, tuples will be equally distributed between disks

●  Retrieval work is then well balanced between disks.
■  Good for point queries on partitioning attribute

●  Can lookup single disk, leaving others available for answering 
other queries. 

●  Index on partitioning attribute can be local to disk, making lookup 
and update more efficient

■  No clustering, so difficult to answer range queries

Comparison of Partitioning Techniques (Cont.)
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Comparison of Partitioning Techniques (Cont.)

■  Range partitioning:
■  Provides data clustering by partitioning attribute value.
■  Good for sequential access
■  Good for point queries on partitioning attribute: only one disk needs to 

be accessed.
■  For range queries on partitioning attribute, one to a few disks may need 

to be accessed
●  Remaining disks are available for other queries.
●  Good if result tuples are from one to a few blocks. 
●  If many blocks are to be fetched, they are still fetched from one to a 

few disks, and potential parallelism  in disk access is wasted
! Example of execution skew.
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Partitioning a Relation across Disks
■  If a relation contains only a few tuples which will fit into a single disk 

block, then assign the relation to a single disk.
■  Large relations are preferably partitioned across all the available 

disks.
■  If a relation consists of m disk blocks and there are n disks available in 

the system, then the relation should be allocated min(m,n) disks.
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Handling of Skew

■  The distribution of tuples to disks may be skewed — that is, some 
disks have many tuples, while others may have fewer tuples.

■  Types of skew:
●  Attribute-value skew.

! Some values appear in the partitioning attributes of many 
tuples; all the tuples with the same value for the partitioning 
attribute end up in the same partition.

! Can occur with range-partitioning and hash-partitioning.
●  Partition skew.

! With range-partitioning, badly chosen partition vector may 
assign too many tuples to some partitions and too few to 
others.

! Less likely with hash-partitioning if a good hash-function is 
chosen.
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Handling Skew in Range-Partitioning

■  To create a balanced partitioning vector (assuming partitioning 
attribute forms a key of the relation):
●  Sort the relation on the partitioning attribute.
●  Construct the partition vector by scanning the relation in sorted 

order as follows.
! After every 1/nth of the relation has been read, the value of  

the partitioning attribute of the next tuple is added to the 
partition vector.

●  n denotes the number of partitions to be constructed.
●  Duplicate entries or imbalances can result if duplicates are 

present in partitioning attributes.
■  Alternative technique based on histograms used in practice
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Handling Skew using Histograms

■  Balanced partitioning vector can be constructed from histogram in a 
relatively straightforward fashion
●  Assume uniform distribution within each range of the histogram

■  Histogram can be constructed by scanning relation, or sampling (blocks 
containing) tuples of the relation
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Handling Skew Using Virtual Processor 
Partitioning 

■  Skew in range partitioning can be handled elegantly using virtual 
processor partitioning: 
●  create a large number of partitions (say 10 to 20 times the number 

of processors)
●  Assign virtual processors to partitions either in round-robin fashion 

or based on estimated cost of processing each virtual partition
■  Basic idea:

●  If any normal partition would have been skewed, it is very likely 
the skew is spread over a number of virtual partitions

●  Skewed virtual partitions get spread across a number of 
processors, so work gets distributed evenly!
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Interquery Parallelism

■  Queries/transactions execute in parallel with one another.
■  Increases transaction throughput; used primarily to scale up a 

transaction processing system to support a larger number of 
transactions per second.

■  Easiest form of parallelism to support, particularly in a shared-memory 
parallel database, because even sequential database systems 
support concurrent processing.

■  More complicated to implement on shared-disk or shared-nothing 
architectures
●  Locking and logging must be coordinated by passing messages 

between processors.
●  Data in a local buffer may have been updated at another 

processor.
●  Cache-coherency has to be maintained — reads and writes of 

data in buffer must find latest version of data.
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Cache Coherency Protocol

■  Example of a cache coherency protocol for shared disk systems:
●  Before reading/writing to a page, the page must be locked in 

shared/exclusive mode.
●  On locking a page, the page must be read from disk
●  Before unlocking a page, the page must be written to disk if it 

was modified.
■  More complex protocols with fewer disk reads/writes exist.
■  Cache coherency protocols for shared-nothing systems are similar. 

Each database page is assigned a home processor. Requests to 
fetch the page or write it to disk are sent to the home processor.
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Intraquery Parallelism

■  Execution of a single query in parallel on multiple processors/disks; 
important for speeding up long-running queries.

■  Two complementary forms of intraquery parallelism:
●  Intraoperation Parallelism – parallelize the execution of each 

individual operation in the query.
●  Interoperation Parallelism – execute the different operations in 

a query expression in parallel.
     the first form scales better with increasing parallelism because  

the number of tuples processed by each operation is typically more 
than the number of operations in a query.
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Parallel Processing of Relational Operations

■  Our discussion of parallel algorithms assumes:
●  read-only queries
●  shared-nothing architecture
●  n processors, P0, ..., Pn-1, and n disks D0, ..., Dn-1,  where disk Di is 

associated with processor Pi.
■  If a processor has multiple disks they can simply simulate a single disk 

Di.
■  Shared-nothing architectures can be efficiently simulated on shared-

memory and shared-disk systems.   
●  Algorithms for shared-nothing systems can thus be run on shared-

memory and shared-disk systems.  
●  However, some optimizations may be possible.
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Parallel Sort

Range-Partitioning Sort
■  Choose processors P0, ..., Pm, where m ≤ n -1 to do sorting.
■  Create range-partition vector with m entries, on the sorting attributes
■  Redistribute the relation using range partitioning

●   all tuples that lie in the ith range are sent to processor Pi

●  Pi stores the tuples it received temporarily on disk Di. 
●  This step requires I/O and communication overhead.

■  Each processor Pi sorts its partition of the relation locally.
■  Each processors executes same operation (sort) in parallel with other 

processors, without any interaction with the others (data parallelism).
■  Final merge operation is trivial: range-partitioning ensures that, for 1  j  

m, the key values in processor Pi are all less than the key values in Pj.
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Parallel Sort (Cont.)

Parallel External Sort-Merge
■  Assume the relation has already been partitioned among disks D0, ..., 

Dn-1 (in whatever manner).
■  Each processor Pi locally sorts the data on disk Di.
■  The sorted runs on each processor are then merged to get the final 

sorted output.
■  Parallelize the merging of sorted runs as follows:

●  The sorted partitions at each processor Pi are range-partitioned 
across the processors P0, ..., Pm-1.

●  Each processor Pi performs a merge on the streams as they are 
received, to get a single sorted run.

●  The sorted runs on processors P0,..., Pm-1 are concatenated to get 
the final result.
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Parallel Join

■  The join operation requires pairs of tuples to be tested to see if they 
satisfy the join condition, and if they do, the pair is added to the join 
output.

■  Parallel join algorithms attempt to split the pairs to be tested over 
several processors.  Each processor then computes part of the join 
locally.  

■  In a final step, the results from each processor can be collected 
together to produce the final result.
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Partitioned Join

■  For equi-joins and natural joins, it is possible to partition the two input 
relations across the processors, and compute the join locally at each 
processor.

■  Let r and s be the input relations, and we want to compute r      r.A=s.B s.
■  r and s each are partitioned into n partitions, denoted r0, r1, ..., rn-1 and 

s0, s1, ..., sn-1.
■  Can use either range partitioning or hash partitioning.
■  r and s must be partitioned on their join attributes r.A and s.B), using 

the same range-partitioning vector or hash function.
■  Partitions ri and si are sent to processor Pi,
■  Each processor Pi locally computes ri        ri.A=si.B si. Any of the 

standard join methods can be used.
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Partitioned Join (Cont.)
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Fragment-and-Replicate Join

■  Partitioning not possible for some join conditions 
●  E.g., non-equijoin conditions, such as r.A > s.B.

■  For joins were partitioning is not applicable, parallelization  can be 
accomplished by fragment and replicate technique
●  Depicted on next slide

■  Special case – asymmetric fragment-and-replicate:
●  One of the relations, say r, is partitioned; any partitioning 

technique can be used.
●  The other relation, s, is replicated across all the processors.
●  Processor Pi then locally computes the join of ri with all of s using 

any join technique.
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Depiction of Fragment-and-Replicate Joins
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Fragment-and-Replicate Join (Cont.)

■  General case: reduces the sizes of the relations at each processor.
●  r is partitioned into n partitions,r0, r1, ..., r n-1;s is partitioned into m 

partitions, s0, s1, ..., sm-1.
●  Any partitioning technique may be used.
●  There must be at least m * n processors.
●  Label the processors as
●  P0,0, P0,1, ..., P0,m-1, P1,0, ..., Pn-1m-1.
●  Pi,j computes the join of ri with sj. In order to do so, ri is replicated 

to Pi,0, Pi,1, ..., Pi,m-1, while si is replicated to P0,i, P1,i, ..., Pn-1,i

●  Any join technique can be used at each processor Pi,j.
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Fragment-and-Replicate Join (Cont.)

■  Both versions of fragment-and-replicate work with any join condition, 
since every tuple in r can be tested with every tuple in s.

■  Usually has a higher cost than partitioning, since one of the relations 
(for asymmetric fragment-and-replicate) or both relations (for general 
fragment-and-replicate) have to be replicated.

■  Sometimes asymmetric fragment-and-replicate is preferable even 
though partitioning could be used.
●  E.g., say s is small and r is large, and already partitioned. It may 

be cheaper to replicate s across all processors, rather than 
repartition r and s on the join attributes.
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Partitioned Parallel Hash-Join

Parallelizing partitioned hash join:
■  Assume s is smaller than r and therefore s is chosen as the build 

relation.
■  A hash function h1 takes the join attribute value of each tuple in s and 

maps this tuple to one of the n processors.
■  Each processor Pi reads the tuples of s that are on its disk Di, and 

sends each tuple to the appropriate processor based on hash function 
h1. Let si denote the tuples of relation s that are sent to processor Pi.

■  As tuples of relation s are received at the destination processors, they 
are partitioned further using another hash function, h2, which is used 
to compute the hash-join locally. (Cont.)
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Partitioned Parallel Hash-Join (Cont.)

■  Once the tuples of s have been distributed, the larger relation r is 
redistributed across the m processors using the hash function h1

●    Let ri denote the tuples of relation r  that are sent to processor Pi.
■  As the r tuples are received at the destination processors, they are 

repartitioned using the function h2 
●  (just as the probe relation is partitioned in the sequential hash-join 

algorithm).
■  Each processor Pi executes the build and probe phases of the hash-

join algorithm on the local partitions ri and s of  r and s to produce a 
partition of the final result of the hash-join.

■  Note: Hash-join optimizations can be applied to the parallel case
●   e.g., the hybrid hash-join algorithm can be used to cache some of 

the incoming tuples in memory and avoid the cost of writing them 
and reading them back in.
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Parallel Nested-Loop Join

■  Assume that
●  relation s is much smaller than relation r and that r is stored by 

partitioning.
●  there is an index on a join attribute of relation r at each of the 

partitions of relation r.
■  Use asymmetric fragment-and-replicate, with relation s being 

replicated, and using the existing partitioning of relation r.
■  Each processor Pj where a partition of relation s is stored reads the 

tuples of relation s stored in Dj, and replicates the tuples to every other 
processor Pi. 
●  At the end of this phase, relation s is replicated at all sites that 

store tuples of relation r. 
■  Each processor Pi performs an indexed nested-loop join of relation s 

with the ith partition of relation r.
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Other Relational Operations

Selection σθ(r)
■  If θ is of the form ai = v, where ai is an attribute and v a value.

●  If r is partitioned on ai the selection is performed at a single 
processor.

■  If θ is of the form l <= ai <= u  (i.e., θ is a range selection) and the 
relation has been range-partitioned on ai
●  Selection is performed at each processor whose partition overlaps 

with the specified range of values.
■  In all other cases: the selection is performed in parallel at all the 

processors. 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Other Relational Operations (Cont.)

■  Duplicate elimination
●  Perform by using either of the parallel sort techniques

!   eliminate duplicates as soon as they are found during sorting.
●  Can also partition the tuples (using either range- or hash- 

partitioning) and perform duplicate elimination locally at each 
processor. 

■  Projection
●  Projection without duplicate elimination can be performed as 

tuples are read in from disk in parallel.
●  If duplicate elimination is required, any of the above duplicate 

elimination techniques can be used. 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Grouping/Aggregation

■  Partition the relation on the grouping attributes and then compute the 
aggregate values locally at each processor.

■  Can reduce cost of transferring tuples during partitioning by partly 
computing aggregate values before partitioning.

■  Consider the sum aggregation operation:
●  Perform aggregation operation at each processor Pi on those 

tuples stored on disk Di 
!  results in tuples with partial sums at each processor.

●  Result of the local aggregation is partitioned on the grouping 
attributes, and the aggregation performed again at each processor 
Pi to get the final result.

■  Fewer tuples need to be sent to other processors during partitioning.
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Cost of Parallel Evaluation of Operations 
■  If there is no skew in the partitioning, and there is no overhead due to 

the parallel evaluation, expected speed-up will be 1/n   
■  If skew and overheads are also to be taken into account, the time 

taken by a parallel operation can be estimated as 
            Tpart + Tasm + max (T0, T1, …, Tn-1)
●  Tpart is the time for partitioning the relations
●  Tasm is the time for assembling the results
●  Ti is the time taken for the operation at processor Pi

!  this needs to be estimated taking into account the skew, and 
the time wasted in contentions. 
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Interoperator Parallelism

■  Pipelined parallelism
●  Consider a join of four relations 

!  r1      r2       r3     r4
●  Set up a pipeline that computes the three joins in parallel

! Let P1 be assigned the computation of  
temp1 = r1     r2

! And P2 be assigned the computation of temp2 = temp1     r3
! And P3 be assigned the computation of temp2      r4

●  Each of these operations can execute in parallel, sending result 
tuples it computes to the next operation even as it is computing 
further results
! Provided a pipelineable join evaluation algorithm (e.g., indexed 

nested loops join) is used
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Factors Limiting Utility of Pipeline 
Parallelism 

■  Pipeline parallelism is useful since it avoids writing intermediate 
results to disk

■  Useful with small number of processors, but does not scale up well 
with more processors. One reason is that pipeline chains do not 
attain sufficient length.

■  Cannot pipeline operators which do not produce output until all    
inputs have been accessed (e.g., aggregate and sort) 

■  Little speedup is obtained for the frequent cases of skew in which        
one operator's execution cost is much higher than the others.
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Independent Parallelism

■  Independent parallelism
●  Consider a join of four relations 

     r1     r2      r3      r4
! Let P1 be assigned the computation of  

temp1 = r1      r2
! And P2 be assigned the computation of temp2 = r3     r4
! And P3 be assigned the computation of temp1     temp2

! P1 and P2 can work independently in parallel
! P3 has to wait for input from P1 and P2

–  Can pipeline output of P1 and P2 to P3, combining 
independent parallelism and pipelined parallelism

●  Does not provide a high degree of parallelism
! useful with a lower degree of parallelism.
!  less useful in a highly parallel system. 


