CMSC423: Bioinformatic Algorithms, Databases and Tools

Exact string matching: introduction

Sequence alignment: exact matching

```
ACAGGTACAGTTCCCTCGACACCTACTACCTAAG
```

for i = 0 .. len(Text) {

```
for i = 0 .. len(Text) {
    for j = 0 .. len(Pattern) {
    for j = 0 .. len(Pattern) {
            if (Pattern[j] != Text[i]) go to next i
            if (Pattern[j] != Text[i]) go to next i
        }
        }
    if we got there pattern matches at i in Text
    if we got there pattern matches at i in Text
}
```

}

```

Running time \(=\mathrm{O}(\) len(Text \() * \operatorname{len}(\) Pattern \())=\mathrm{O}(m n)\)
What string achieves worst case?

\section*{Worst case?}

АААААААААААААААААААААААААААААААААААААААААААААА AAAAAAAAAAAAT
\[
(m-n+1) * n \text { comparisons }
\]

\section*{Can we do better?}

\section*{the \(Z\) algorithm (Gusfield)}

For a string \(T, Z[i]\) is the length of the longest prefix of \(T[i . . m]\) that matches a prefix of T . \(\mathrm{Z}[\mathrm{i}]=0\) if the prefixes don't match.
\(T[0\).. \(Z[i]]=T[i \quad . . i+Z[i]-1]\)


\section*{Example \(Z\) values}

\section*{ACAGGTACAGTTCCCTCGACACCTACTACCTAAG 0010004010000000003020002002000110}

\section*{Can the \(Z\) values help in matching?}

Create string Pattern\$Text where \$ is not in the alphabet


If there exists \(i\), s.t. \(\mathrm{Z}[\mathrm{i}]=\) length(Pattern)
Pattern occurs in the Text starting at i

\section*{example matching}

\section*{ССТАСТ\$ACAGGTACAGTTCCCTCGACACCTACTACCTAAG 01001000100000100002310100106100100410000}
- What is the largest \(Z\) value possible?

\section*{Can \(Z\) values be computed in linear time?}

\section*{AAAGGTACAGTTCCCTCGACACCTACTACCTAAG}
\(\mathrm{Z}[1]\) ? compare \(\mathrm{T}[1]\) with \(\mathrm{T}[0], \mathrm{T}[2]\) with \(\mathrm{T}[1]\), etc. until mismatch
\(Z[1]=2\)

This simple process is still expensive:
\(\mathrm{T}[2]\) is compared when computing both \(\mathrm{Z}[1]\) and \(\mathrm{Z}[2]\).
Trick to computing \(Z\) values in linear time: each comparison must involve a character that was not compared before

Since there are only \(m\) characters in the string, the overall \# of comparisons will be \(O(m)\).

\section*{Basic idea: 1-D dynamic programming}

Can \(Z[i]\) be computed with the help of \(Z[j]\) for \(j<i\) ?


Assume there exists j < i, s.t. \(\mathrm{j}+\mathrm{Z}[\mathrm{j}]-1>\mathrm{i}\) then \(Z[i-j+1]\) provides information about \(Z[i]\)

If there is no such \(j\), simply compare characters \(T[i .\).\(] to T[0 .\). since they have not been seen before.

\section*{Three cases}

Let j < i be the coordinate that maximizes \(\mathrm{j}+\mathrm{Z}[\mathrm{j}]-1\) (intuitively, the \(Z[j]\) that extends the furthest)
I. \(Z[i-j+1]<Z[j]-i+j-1=>Z[i]=Z[i-j+1]\)

II. \(Z[i-j+1]>Z[j]-i+j-1=>Z[i]=Z[j]-i+j-1\)

III. \(Z[i-j+1]=Z[j]-i+j-1=>Z[i]=? ?\), compare from

\[
i+Z[i-j+1]
\]

\section*{Time complexity analysis}
- Why do these tricks save us time?
1. Cases I and II take constant time per Z-value computed total time spent in these cases is \(\mathrm{O}(\mathrm{n})\)
2. Case III might involve 1 or more comparisons per Z-value however:
- every successful comparison (match) shifts the rightmost character that has been visited
- every unsuccessful comparison terminates the "round" and algorithm moves on to the next Z-value
total time spent in III cannot be more than \# of characters in the text
Overall running time is \(\mathrm{O}(\mathrm{n})\)

\section*{Space complexity?}
- If using \(Z\) algorithm for matching, how many \(Z\) values do we need to store?

PPPPPPPPPP\$TTTTTTTTTTTTTTTTTTTTTTTT

\section*{Some questions}
- What are the Z-values for the following string: TTAGGATAGCCATTAGCCTCATTAGGGATTAGGAT
- In the string above, what is the longest prefix that is repeated somewhere else in the string?
- Trace through the execution of the linear-time algorithm for computing the \(Z\) values for the string listed above. How many times do rules I, II, and III apply?

\section*{Z algorithm, not just for matching}
- Lempel-Ziv compression (e.g. gzip)

if \(Z[i]=0\), just send/store the character \(T[i]\), otherwise, instead of sending \(T[i . . i+Z[i]-1]\) ( \(Z[i]-1\) characters/bytes) simply send \(Z[i]\) (one number)
- Note: other exact matching algorithms used for data compression (e.g. Burrows-Wheeler transform relates to suffix arrays)

\section*{Knuth-Morris-Pratt algorithm}

Given a Pattern and a Text, preprocess the Pattern to compute \(s p[i]=\) length of longest prefix of \(P\) that matches a suffix of \(P[0 . . i]\)

- Compare P with T until finding a mis-match (at coordinate \(i+1\) in \(P\) and \(j+1\) in \(T\) ).
- Shift \(P\) such that first \(s p[i]\) characters match \(T[j-s p[i]+1\).. j].
- Continue matching from T[i+1], P[sp[i]+1]
index: 0123456
pattern: AAAAAAA
sp: 0123456
index: 0123456
pattern: AAAAAAB
sp: 0123450

AAAAABAAAAAABAAAAAAA
\begin{tabular}{ll} 
index: & 0123456 \\
pattern: & ABACABC \\
sp: & 0010120
\end{tabular}

\section*{ABABBABAABABACABC}

\section*{KMP}
- Does it work?
- Can you miss a match by shifting too far?
- How do you prove that?

\section*{KMP - speed}
- How many character comparisons are made during the execution?
- If a character in the text matches a character in the pattern, do we have to look at it again?
- How many times can a character in the text fail to match the pattern?

\section*{KMP - computing sp values}
- Can sp values be computed efficiently?
- Can you use \(Z\) values?
- (aside - sp' values)
- Can you use induction as for the \(Z\) values?```

