
CMSC423: Chapter 9
Suffix tree, suffix arrays, Burrows Wheeler

Transform

2

Class so far...
• Deterministic searching (counting, clumps)
• Exact matching (KMP, Z algorithm)
• Randomized searching (Gibbs sampling)
• Branch and bound search (Proteomics)
• Dynamic programming for inexact matching

• This week: exact matching again, for indexing

3

Stop and think
• Given a text T and pattern P
• Find the longest prefix of P that matches somewhere in T

• Note: KMP solves this for the prefix that is the whole P
• What if the whole of P does not match?

4

Stop and think...part 2
• Given text T and pattern P
• Find the longest substring of P that matches somewhere in

T
• in O(n) time

• Substring – the characters are adjacent (unlike
subsequence discussed last week)

• Note: dynamic programming solves the above in O(n2) time
(pick the right weights and use local alignment)

5

Solution...
• Note: Donald Knuth did not think O(n) was possible

• Solution:
– Think of suffixes
– Each substring is a prefix of a suffix
– But we know how to solve longest prefix

• How do we organize suffixes?

6

Many strings: trie
• Basic idea: if many strings share a same sequence only

represent it once in the tree

their
there
was
when

t w

h

e

i

r

r

e

a

s

h

e

n

Stop and think: How many nodes are in the suffix trie for a string of length N?

7

Suffix tree
• Extends trie of all suffixes of a string
• Collapses non-branching nodes
 1 ATCATG
 2 TCATG
 3 CATG
 4 ATG
 5 TG
 6 G

AT

G T CATG

G CATG
G

CATG

4 1

6

5 2

3

Stop and think:
How many nodes are in the suffix tree for a string of length N?
How much memory do you need to store the suffix tree?

8

Suffix tree ...cont
• To store in linear space – just store range in sequence

instead of string
• To ensure suffixes end at leaves, add $ char at end of string
• ATCATG$

AT
1,2

G$
6,7

T
2,2

CATG$
3,7

G$
6,7

CATG$
3,7 G$

6,7

CATG$
3,7

4 1

6

5 2

3

$
7,7

7

9

Suffix trees for matching
• Suffix trees use O(n) space
• Suffix trees can be constructed in O(n) time
• Is CAT part of ATCATG ?
• Match from root, char by char
• If run out of query – found match
• otherwise, there is no match

• intuition: CAT is the prefix
of some suffix

AT
1,2

G$
6,7

T
2,2

CATG$
3,7

G$
6,7

CATG$
3,7 G$

6,7

CATG$
3,7

4 1

6

5 2

3

$
7,7

7

10

Other uses
• Finding repeats

– internal nodes with multiple children – DNA that occurs in multiple
places in the genome

• Longest common substring of two strings
– build suffix tree of both strings. Find lowest internal node that has

leaves from both strings
– or: build suffix tree on one string and use suffix links to find longest

match

• Note: running time for matching is O(|Pattern|),
not O(|Pattern| + |Text|)
(though O(|Text|) was spent in pre-processing)

• In KMP,runtime is O(|Text|) with O(|Pattern|) preprocesssing

11

Suffix arrays
• Suffix trees are expensive > 20 bytes / base
• Suffix arrays: lexicographically sort all suffixes

• Can quickly find the correct suffix through binary search

• Stop and think: How long does it take to sort N strings of
length L?

 ATG 4
ATCATG 1
 CATG 3
 G 6
 TCATG 2
 TG 5

12

Suffix arrays and compression
• Burrows-Wheeler transform

BANANA

 BANANA$
 ANANA$B
 NANA$BA
 ANA$BAN
 NA$BANA
 A$BANAN
$BANANA

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

sort ANNB$AA
compress

character before the suffix

BWT

Note: characters in last column occur in same order
as in first column
Useful for matching within BWT

13

BWT – string matching
• Look for “BANA”

• Start at end (match right to left)

• Find character in rightmost column

• Identify corresponding range in first column

• Switch back to last column

• ...

• How do we know the first
A in the pattern is the 2nd/3rd
from the top of the matrix?

• Note: add'l data needed:
of times each letter appears
before every pos'n

• Running time?

O(len(P)) operations. Each may cost O(log(len(T)))

ABN$
0000
1000
1010
1020
1120
1121
2121

$BANANA
A$BANAN
ANA$BAN
ANANA$B
BANANA$
NA$BANA
NANA$BA

A N

A

A
B

