
CMSC423: Bioinformatic Algorithms, Databases and Tools

Data clustering

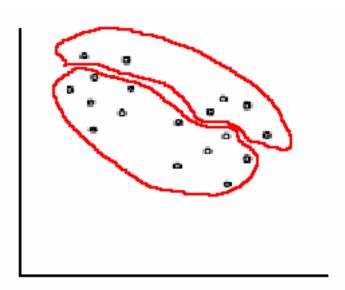
Why data clustering?

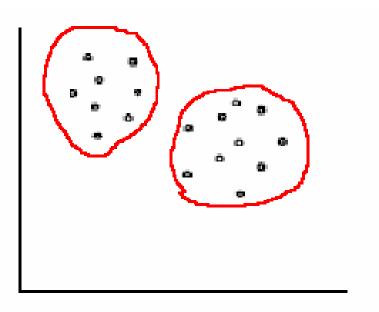
What does this mean?

Data clustering...

>F4BT0V001CZSIM rank=0000138 x=1110.0 y=2700.0 length=57 ACTGCTCTCATGCTGCCTCCCGTAGGAGTGCCTCCCTGAGCCAGGATCAAACGTCTG >F4BT0V001BBJQS rank=0000155 x=424.0 y=1826.0 length=47 ACTGACTGCATGCTGCCTCCCGTAGGAGTGCCTCCCTGCGCCATCAA >F4BT0V001EDG35 rank=0000182 x=1676.0 y=2387.0 length=44 ACTGACTGCATGCTGCCTCCCGTAGGAGTCGCCGTCCTCGACNC >F4BT0V001D2HQQ rank=0000196 x=1551.0 y=1984.0 length=42 ACTGACTGCATGCTGCCTCCCGTAGGAGTGCCGTCCCTCGAC >F4BT0V001CM392 rank=0000206 x=966.0 y=1240.0 length=82 AANCAGCTCTCATGCTCGCCCTGACTTGGCATGTGTTAAGCCTGTAGGCTAGCGTTCATC CCTGAGCCAGGATCAAACTCTG >F4BT0V001EIMFX rank=0000250 x=1735.0 y=907.0 length=46 ACTGACTGCATGCTGCCTCCCGTAGGAGTGTCGCGCCATCAGACTG >F4BT0V001ENDKR rank=0000262 x=1789.0 y=1513.0 length=56 GACACTGTCATGCTGCCTCCCGTAGGAGTGCCTCCCTGAGCCAGGATCAAACTCTG >F4BT0V001D91MI rank=0000288 x=1637.0 y=2088.0 length=56 ACTGCTCTCATGCTGCCTCCCGTAGGAGTGCCTCCCTGAGCCAGGATCAAACTCTG >F4BT0V001D0Y5G rank=0000341 x=1534.0 y=866.0 length=75 GTCTGTGACATGCTGCCTCCCGTAGGAGTCTACACAAGTTGTGGCCCAGAACCACTGAGC CAGGATCAAACTCTG >F4BT0V001EMLE1 rank=0000365 x=1780.0 y=1883.0 length=84 ACTGACTGCATGCTGCCTCCCGTAGGAGTGCCTCCCTGCGCCATCAATGCTGCATGCTGC TCCCTGAGCCAGGATCAAACTCTG

Data clustering...


- Given a collection of data-points can we identify any patterns?
- Data-points:
 - DNA sequences
 - Gene expression levels
 - Organism abundances in an environment
 - Vitals
- Patterns:
 - do certain points group together?


Types of clustering algorithms

- Agglomerative
 - Start with single observations
 - Group similar observations into the same cluster
- Divisive
 - All datapoints start in the same cluster
 - Iteratively divide cluster until you find good clustering
- Hierarchical
 - Build a tree leaves are datapoints, internal nodes represent clusters

The good clustering principle

- Homogeneity
 - All points in a cluster must be similar
- Separation
 - Points in different clusters are disimilar

Some issues with clustering

- Good clustering principle may not be achievable
- Finding the optimal clustering is usually NP-hard

In how many ways can you partition n points into 2 clusters?

k-center clustering

- Pick k centers
- For each point, select the nearest center
- Find the set of k centers that minimizes the maximum distance between any point and its nearest center

- How many centers can there be?
- For k = 1, how can you pick the center?

Farthest-first clustering

- Pick a point first center
- Pick the farthest point from it second center
- repeat until k centers found

Can you prove that solution is at most twice as bad as optimal?

Properties of distance

- Distance is Euclidean distance
- It is a metric satisfies triangle inequality
- This property helps prove 2-approximation
- Note: Euclidean is not important farthest distance works with any metric distance

k-means clustering

- Instead of min-max, use squared error average distance from points to corresponding centers
- For k = 1, how do you pick center?

k-means clustering – Lloyd's algorithm

- Goal: split data into exactly k clusters
- Basic algorithm:
 - Create k arbitrary clusters pick k points as cluster centers and assign each other point to the closest center
 - Re-compute the center of each cluster
 - Re-assign points to clusters
 - Repeat
- Another approach: pick a point at and see if moving it to a different cluster will improve the quality of the overall solution. Repeat!

K-means clustering...visual

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

Hierarchical clustering

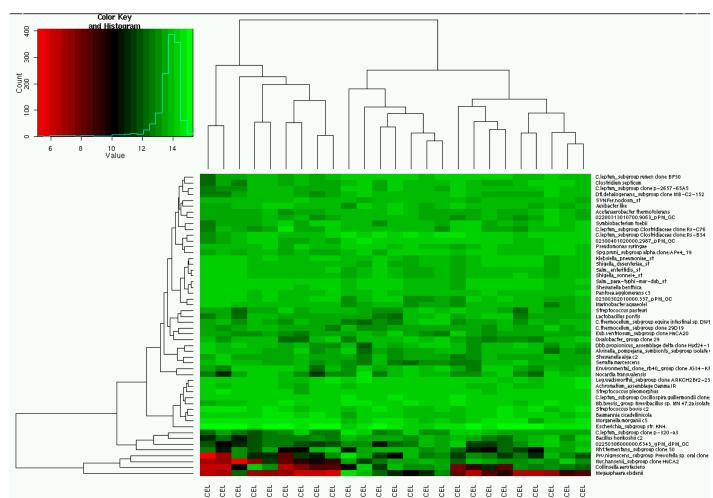
- Need: definition of distance between data-points (e.g. individual genes).
- Some measures:
 - Euclidean distance
 - Manhattan distance
 - Pearson correlation

$$D(x, y) = \sqrt{\sum_{i} (x_{i} - y_{i})^{2}}$$

$$D(x, y) = \sum_{i} |x_{i} - y_{i}|$$

$$D(x, y) = \frac{E[(x - \mu_x)(y - \mu_y)]}{\sigma_x \sigma_y}$$

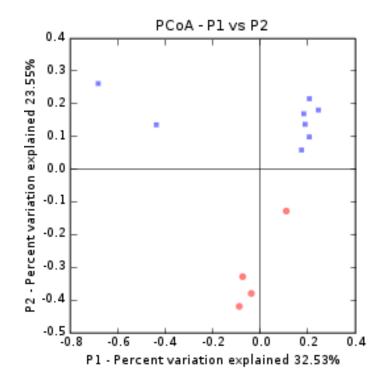
- Angle between vectors (centered Pearson correlation)
- Clustering algorithm
 - group together data-points that are most similar
 - repeat…


Hierarchical clustering

- Key element: how do you compute distance between two clusters, or a point and a cluster ?
- UPGMA/average neighbor (average linkage)
 - average distance between all genes in the two clusters
- Furthest neighbor (complete linkage)
 - largest distance between all genes in clusters
- Nearest neighbor (single linkage)
 - smallest distance between all genes in clusters
- Ward's distance
 - inter-cluster distance is variance of inter-gene distances

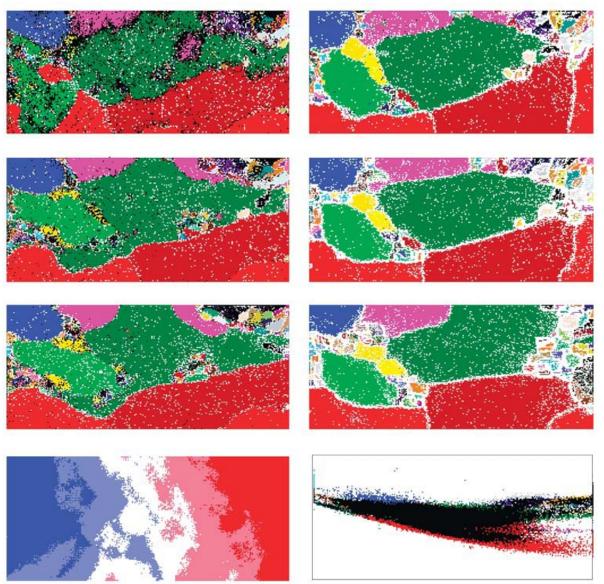
Hierarchical clustering...cont

- Irrespective of distance choice, algorithm is the same
 - 1. compute inter-gene/cluster distances
 - 2. join together pair of genes/clusters with smallest distance
 - recompute distances to include the newly created cluster
 repeat until all points in one cluster
- Output of program is a tree
- Cluster sets defined by "cut" nodes any subset of internal tree nodes defines a set of clusters – the sets of leaves in the corresponding subtrees
- Choice of cut can be tricky usually problem-specific


Example: gut microbiome in children

tine_phylo36_600022-23.CEL stine_phylo36_600104-6.CEL stine_phylo36_600035-1.CEL stine_phylo36_600002-11.CEL tine_phylo36_600025-14.CEL stine_phylo36_600100-25.CEL stine_phylo36_600053-3.CEL stine_phylo36_600081-13.CEL stine_phylo36_600038-2.CEL stine_phylo36_600113-7.CEL stine_phylo36_600112-17.CEL stine_phylo36_600021-10.CEL stine_phylo36_600319-19.CEL stine_phylo36_600262-22.CEL stine_phylo36_600005-9.CEL stine_phylo36_600096-18.CEL stine_phylo36_600030-12.CEL stine_phylo36_600011-16.CEL stine_phylo36_600004-15.CEL stine_phylo36_600132-8.CEL stine_phylo36_600060-4.CEL stine_phylo36_600227-21.CEL stine_phylo36_600064-5.CEL stine_phylo36_600090-24.CEL stine_phylo36_600260-20.

Other clustering approaches


- Principal component analysis
 - Identify a direction (vector V) such that the projection of data on V has maximum variance (first principal component)
 - repeat (vector V' != V such that project of data on V' has maximum variance)
 - Usually plot the first 2 or 3 principal components

Other clustering approaches

- Self-organizing maps
 - Neural-network based approach
 - Output layer of network are points in a low-dimensional space
- Graph theoretic
 - Points are connected by edges representing strength of "connection" (e.g. similarity or dissimilarity)
 - Pick clusters such that number of "similar" edges spanning boundaries is minimized, or number of "dissimilar" edges within each cluster is minimized
- Markov chain clustering
 - basic idea a random walk through a graph will stay within a local strongly connected region

Self organizing map of genomes

http://www.jamstec.go.jp/esc/esc/publication/journal/jes_vol.6/pdf/JES6_22-Abe.pdf