CMSC423: Bioinformatic Algorithms, Databases and Tools

Phylogenetic trees

First evolutionary tree...

a.k.a phylogenetic tree

Phylogenetic trees - how evolution works

http://www.tolweb.org/tree/ - the tree of life

Anatomy of a tree

Connected and Acyclic

Anatomy of a tree

Phylogenetic trees are usually binary (though they don't have to)

DNA sequence evolution

today

Phylogeny problem

Phylogeny estimation methods

- Distance-based methods
- Maximum parsimony
- Maximum Likelihood
- Bayesian MCMC

Distance-Based Phylogeny Problem

Reconstruct an evolutionary tree fitting a distance matrix

Input: A distance matrix
Output: A tree fitting this distance matrix

Distance matrix

Distance matrix

- Symmetric (for all $i, j D_{i, j}=D_{j, i}$)
- Non-negative
- satisfy triangle's inequality (for all i, j, and k,
$\left.D_{i, j}+D_{j, k}>=D_{i, k}\right)$

SPECIES	AlIGNMENT	Distance MATRIX			
		Chimp	Human	Seal	Whale
Chimp	ACGTAGGCCT	0	3	6	4
Human	ATGTAAGACT	3	0	7	5
Seal	TCGAGAGCAC	6	7	0	2
Whale	TCGAAAGCAT	4	5	2	0

Trees as clustering

-Start with a distance matrix - distance (e.g. alignment distance) between any two sequences (leaves)
-Intuitively - want to cluster together the most similar sequences
-UPGMA - Unweighted Pair Group Method using Arithmetic averages
-It assumes an ultrametric tree in which the distances from the root to every
branch tip are equal

Trees as clustering

-UPGMA - Unweighted Pair Group Method using Arithmetic averages
-lt assumes an ultrametric tree in which the distances from the root to every branch tip are equal.
-Build pairwise distance matrix (e.g. from a multiple alignment)
-Pick pair of sequences that are closest to each other and cluster them create internal node that has the sequences as children
-Repeat, including newly created internal nodes in the distance matrix
-Key element - must be able to quickly compute distance between clusters (internal nodes) - weighted distance

$$
D\left(c l_{1}, c l_{2}\right)=\frac{1}{\left|c l_{1}\right|\left|c l_{2}\right|} \sum_{p \in c c_{1}, q \in c l_{2}} D(p, q)
$$

Trees as clustering

-Note that UPGMA does not estimate branch lengths - they are all assumed equal
-Neighbor-joining
-distance between two sequences is not sufficient - must also know how each sequence compares to every other sequence $-N J d i s t(i, j)=D(i, j)-\left(r_{i}+r_{j}\right) \quad$ where r_{i}, r_{j} are correction factors

$$
r_{i}=\frac{1}{m-2} \sum_{k} D(i, k)
$$

Neighbor joining

-Pick two nodes with NJdist(i,j) minimal
-Create parent k s.t.
$-D(k, m)=0.5(D(i, m)+D(j, m)-D(i, j))$ for every other node m
$-D(i, k)=0.5\left(D(i, j)+r_{i}-r_{j}\right)$ - length of branch between i \&k
$-D(j, k)=0.5\left(D(i, j)+r_{j}-r_{i}\right)-$ length of branch between $j \& k$

Trees as clustering

-Note that both UPGMA and NJ assume distance matrix is additive.
\bullet •(Recall - Additive matrix is when lengths of all edges
along the path between leaves i and j in a tree fitting the matrix D add to $D_{i, j}$)
-Also, NJ can be proven to build the optimal tree!

Character-based phylogeny questions

-Given several organisms \& a set of features (usually sequence, but also morphological: wing shape/color...)
-A. Given a phylogenetic tree - figure out what the ancestors looked like (what are the features of internal nodes)

wings, feathers, teeth claws, no wings, fur
-B. Find the phylogenetic tree that best describes the common evolutionary heritage of the organisms

Example

Think about these before next class...

-A. Given a phylogenetic tree - figure out what the ancestors looked like (what are the features of internal nodes)

-B. Find the phylogenetic tree that best describes the common evolutionary heritage of the organisms

Thanks!

Contact:
nidhi@cs.umd.edu

Phylogeny questions

-A. Easy-ish - can be done with dynamic programming -B. Hard - Many possible trees

$$
\frac{(2 n-3)!}{2^{n-2}(n-2)!}
$$

rooted trees with n leaves

Scoring a tree - Sankoff's algorithm

-Assumption - we try to minimize \# of state changes from root to leaves - Parsimony approach
-Small parsimony
-given a tree where leaves are labeled with m-character strings
-find labels at internal nodes s.t. \# of state transitions is minimzed
-Weighted small parsimony
-same as parsimony except that state transitions are assigned weights
-minimize the overall weight of the tree

Sankoff's algorithm

-At each node v in the tree store $s(v, t)$ - best parsimony score for subtree rooted at v if character stored at v is t
-Traverse the tree in post-order and update $s(v, t)$ as follows
-assume node v has children u and w
$-\mathrm{s}(\mathrm{v}, \mathrm{t})=\min _{\mathrm{i}}\{\mathrm{s}(\mathrm{u}, \mathrm{i})+\mathrm{score}(\mathrm{i}, \mathrm{t})\}+\min _{\mathrm{j}}\{\mathrm{s}(\mathrm{w}, \mathrm{j})+\mathrm{score}(\mathrm{j}, \mathrm{t})\}$
-Character at root will be the one that maximizes s (root,
t)
-Note - this solves the weighted version. For unweighted set score $(i, i)=0$, score $(i, j)=1$ for any i, j

Maximum likelihood

-For every branch S->T of length t, compute $P(T \mid S, t)$ likelihood that sequence S could have evolved in time t into sequence T
-Find tree that maximizes the likelihood
-Note that likelihood of a tree can be computed with an algorithm similar to Sankoffs
-However, no simple way to find a tree given the sequences - most approaches use heuristic search techniques
-Often, start with NJ tree - then "tweak" it to improve likelihood

