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1 Propositional Logic

Suppose that At is a (finite or countable) set of atomic propositions. Propositional for-
mulas are defined inductively:

e If p € At, then p is a propositional formula.

e If ¢ is a propositional formulas, then so is —¢.

e If ¢, 1) are propositional formulas, thensoare p A, @ Vi, and ¢ — 1.
e Nothing else is a propositional formula.

Rather than writing out the full inductive definition, it is common to define a formal
language by specifying the (context-free) grammar that generates the language:

Definition 1 (Propositional Formulas) Suppose that At is a set of atomic propositions.
Let L(At) be the smallest set of formulas defined by the following grammar:

pl-ploAyleoVi|le >y

where p € At. We write L instead of L(At) when the set of atomic propositions is
understood. <

Definition 2 (Propositional Valuation) A propositional valuation is a function V : At —
{1,0}. This function is extended to all propositional formulas, denoted V : L(At) — {0, 1},
as follows:

° V(p) = V(p) for all p € At
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To simplify the notation, we often write V for both the propositional valuation and its
extension to the full set of propositional formulas. <

Sometimes it is convenient to include two special atomic propositions ‘L”and ‘T’, meaning
‘false” and ‘true’, respectively. We can either think of these atomic proposition as being
defined (L is p A —p and T is p V —p for some p € At) or as special atomic propositions
where for all propositional valuations, V(1) = 0and V(T) = 1.

We say that a set I of propositional formulas is satisfiable if all the formulas in I" can
be true at the same time, i.e., there is a propositional valuation V such that for all ¢ € T,
V(p) = 1. A formula ¢ € I' is valid if for all propositional valuations V, V(¢) = 1.

Definition 3 (Logical Consequence) Suppose that I' is a set propositional formulas. We
say that ¢ is a logical consequence of I', denoted I' = ¢, provided that for all propositional
valuations V, if forall ¢ € I, V(¢) = 1, then V(p) = 1. <

There are many different types of axiomatizations for propositional logic (e.g., Hilbert-
style deductions, natural deduction systems, Gentzen systems, Tableaux). Consider the
following axiom schemes and rule:
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Note that a, f and y should be thought of as meta-variables that will be replaced with any
formula of propositional logic.

Definition 4 (Deduction) Suppose thatIis a set of propositional formulas. A deduction
of ¢ from I is a finite sequence of formulas ¢y, ..., p, where ¢, = ¢, foreachi=1,...,n,
@; is either an element of I', an instance of one of the above axiom schemes or follows
from earlier formulas by Modus Ponens (i.e., there are ¢;, ¢, such that jk < i, ¢; = a,
@ =a — pand @; = f. We write I - ¢ when there is a deduction of ¢ from I'. <

We say that a set of formulas I' is consistent if I' ¥ L. The two key theorems relating
deductions and logical consequence are Soundness and Completeness:

Theorem 5 (Soundness) I - ¢ implies that I’ | ¢.

Theorem 6 (Completeness) I' = ¢ implies that T’ + .

1.1 Possible Worlds

Suppose that W is a non-empty set, elements of which are called possible worlds, or
states. Each possible world is associated with a propositional valuation. This is typically
expressed by a valuation function: V : WxAt — {0, 1}. A valuation functionis extended to
afunction V : Wx L — {0,1} asin Definition 2. As above, we ofter write V : Wx L — {0, 1)
for both the valuation function and its extension to L.



Each valuation function V : Wx £ — {0, 1} is associate with a function [-] : £ — p(W),
where (W) is the set of all subsets of W, as follows:

Foreach ¢ € L, [[¢] = {w| V(w, ¢) =1}
It is a straightforward (but instructive!) exercise to verify the following Fact:
Fact7 Forallp e L,
o [l =W -l
o [p Ayl =lelnl¥I
o [pVvyl=lelvlvl
o [o—=yl=W-IleDulyl

2 First-Order Logic

The language of predicate logic is constructed from a number of different pieces of syntax:
variables, constants, function symbols and predicate symbols. Both function and predi-
cate symbols are associated with an arity: the number of arguments that are required by
the function or predicate. We start by defining terms. Let V be a finite (or countable) set
of variables and C a set of constants.

Definition 8 (Terms) Let V be a set of variable, C a set of constant symbols and ¥ a set
of function symbols. Each function symbol is associated with an arity (a positive integer
specifying the number of arguments). Write f ) when the arity of f isn. A term 7 is
constructed as follows:

e Any variable x € ‘V is a term.
e Any constant ¢ € C is a term.

o Iff ) e F is a function symbol (i.e., f accepts n arguments) and 7y, ..., 7, are terms,
then f(74,...,7,) is a term.

¢ Nothing else is a term.

Let 7 be the set of terms. <

Terms are used to construct atomic formulas:



Definition 9 (Atomic Formulas) Let P be a set of predicate symbols. Each predicate
symbol is associated with an arity (the number of objects that are related by P). We write
P™ if the arity of P is n. Suppose that P is an atomic predicate symbol with arity n.
If 74,...,7, are terms, then P(ty,...,7,) is an atomic formula. To simplify the notation,
we may write P17 - - T,. A special predicate symbol ‘=’ is included with the intended
interpretation equality. <

Definition 10 (Formulas) Formulas are constructed as follows:
e Atomic formulas P(ty,...,T,) are formulas;
o If ¢ is a formula, then so is —¢;
e If ¢ and 1) are a formulas, then sois ¢ A ¢;
o If ¢ is a formula, then so is (Yx)¢p, where x is a variable;

e Nothing else is a formula.

The other boolean connectives (V, —, <) are defined as usual. In addition, (3x)¢ is defined
as —(Vx)—o. <

Definition 11 (Free Variable) Suppose that x is a variable. Then, x occurs free in ¢ is
defined as follows:

1. If ¢ is an atomic formula, then x occurs free in ¢ provided x occurs in ¢ (i.e., is a
symbol in ¢).

2. x occurs free in -1 iff x occurs free in ¢
3. x occurs free in 11 A ¢ iff x occurs free in Y1 or x occurs free in 1,
4. x occurs free in (Vy)i iff x occurs free in i and x # y

5. x occurs free in (dy)y iff x occurs free in ¢ and x # y <
The set of free variables in ¢, denoted Fr(¢p), is defined by recursion as follows:

1. If ¢ is an atomic formula, then Fr(¢p) is the set of all variables (if any) that occur in ¢
2. If ¢ is =1, then Fr(—¢) = Fr(¢p)

3. If @ is 1 A P, then Fr(p) = Fr(y1) U Fr(y»)

4. If ¢ is (Vx)1p, then Fr(y) = Fr(y) after removing x, if present.

A variable x that is not free is said to be bound. Formulas that do not contain any free
variables are called sentences:

Definition 12 (Sentence) If ¢ is a formula and Fr(¢) = 0 (i.e., there are no free variables),
then ¢ is a sentence. <



2.1 Substitutions

If T and 7’ are terms, we write 7[x/7’] for the terms where x is replaced by 7. We can
formally define this operation by recursion:

o x[x/T'] =1

o ylx/T']=yforx#y

e c[x/T']=c

o F(t1,...,tn)x/T'] = F(t1[x/7'], ..., Tulx/7'])

The same notation can be used for formulas ¢[x/7] which means replace all free occur-
rences of x with 7 in a formula ¢. This is defined as follows:

o P(1y,...,t)lx/t] = P(t[x/7], ..., Tu[x/7])
o —lx/7] = ~(plx/T])

o (1 AY)lx/T] = Palx/T] A olx/T]

o (Vx)p)lx/t] = (Vx)p

o (YY)@)lx/t] = (Yy)plx/7], where y # x

The following are key examples of this operation:

L (x=yly/xlisx =xand (x = y)[x/ylisy =y,

2. (Vx(x = y))lx/ylis (Vx)x = y,

3. (Vx(x = y)ly/x]is (Vx)x = x,

4. (Vx)=(Yy)(x = y) = (=Yylx = y)x/ylis (V)= (Vy)(x = y) = =Yy(y = y).

Definition 13 (Substitutability) A term 7 is substitutable for x in ¢ is defined as follows:

e For an atomic formula ¢, 7 is always substitutable for x in ¢ (there are no quantifiers,
so t can always be substituted for x)

e 7 is substitutable for x in - iff 7 is is substitutable for x in ¢

e 7 is substitutable for x in Y1 A ¢ iff T is is substitutable for x in ¢; and 7t is is
substitutable for x in

e 7 is substitutable for x in (Yy)y iff either

1. x does not occur free in (Vy)y

2. y does not occur in T and 7 is substitutable for x in 1. <
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2.2 First-Order Models
2.2.1 Interpreting Terms

Suppose that W is a set. An interpretation I (for W) associates with each functions symbol
F a function on W of the appropriate arity, denoted F!, and to each constant ¢ an element
of W, denoted c!. If W is a set and I an interpretation, then for a function symbol F of arity
n,

FlrWx---xW—>W
———
n times

For each constant symbol, ¢, we have
dew

Our goal is to show how to associate with each term and element of a set W. We first need
the notion of a substitution:

Definition 14 (Substitution) Suppose that W is a nonempty set. A substitution is a
functions : V — W. <

Definition 15 (Interpretation of Terms) Suppose that I is an interpretation for W and
s : V — W is a substitution. We define the function (I,s) : 7 — W by recursion as
follows:

* (I,s)(x) = s(x)
e (I,s)c)=!
b (I/ S)(F(Tll ceey Tn)) = FI((I/ S)(Tl)/ ceey (I/ S)(TH)) <

Suppose that s : V — W is a substitution. If 2 € W, we define a new substitution
s[x/a] as follows:

S[ie/al(y) = {“ fy=x

s(x) otherwise

Suppose thats : V — Wand s’ : V — W are two substitutions. For each variable
x € V, we define a relation on the set of substitutions as follows:

s ~x s iff s(y) = s'(y) forall y # x

Hence, s ~ s’ provided there is some a € W such that s’ = s[x/a].



2.2.2 First Order Models

Definition 16 (Model) A modelis a pair A = (W, I) where W is a nonempty set (called the
domain) and I is a function (called the interpretation) assigning to each function symbol
F, a function denoted F!, to each constant symbol, an element of W denoted ¢! and to each
predicate symbol P, a relation on W of the appropriate arity. If P has arity n, then we have

PPCcWx---xW

N~— ——
n times

If A is a model, we write |A| for the domain of A, and we write F, ¢ and P? to denote
Fl cland P/, respectively. <

We say s is a substitution for A provided s : V — |A|. Let A = (W, I) be a model. For
each term 7, we write 7% for (I, s)(1).

Definition 17 (Truth) Suppose that A is a model and s is a substitution for A. The
formula ¢ is true in A (given s), denoted A, s¢, is defined by recursion as follows:

o AsskEP(1q,...,1,)iff (Tlﬂ’s,...,’cf’s) e pA

o AskYiff A,s Y

o AskE i1 AP iff A,s E Y and A, s E Y

o A,s E (Vx)y iff for all substitutions s’ for A if s ~, s’, then A, s’ = ¢ <

2.3 Deductions in First Order Logic

An axiom system for first-order logic consists of the following four axioms (there are
others, this is the one from Enderton’s Introduction to Mathematical Logic):

( 7

1. All tautologies
2. (Vx)@ — @[x/t], where 7 is substitutable for x in ¢
3. (V0@ = ¢) = (V)¢ — (Vx)p)

4. ¢ — (Yx)@, where x does not occur free in ¢

= J

Definition 18 (Generalization) Given a formula ¢, a generalization of ¢ is a formula of
the form (Yx1) - - - (Vx,) . <

Definition 19 (Tautology) A tautology (in FOL) is any formula obtained by replacing
each atomic proposition with a first-order formula. <



Definition 20 (Deduction) We write I' + ¢ iff there is a finite sequence of formulas

(p1,..

.,@n such that ¢, = ¢, each @; is either a generalization of one of the above ax-

ioms, is an element of T, or follows from earlier formulas on the list by modus ponens.
We write + ¢ instead of 0 +- ¢. <

Example . + dx(a A ) — dxa A Jxp.

24

1. Vx(ma — =(a APp)) Instance of Axiom 1
2. Vx(—a — =(a AB)) = (Vx—a — Vx=(a A B)) Instance of Axiom 3
3. Vx—a— Vx-(aAPp) MP 1,2
4. (Vx-a = Vx=(a Ap)) = (0Vx—(a A P) = —~Vx—a) Instance of Axiom 1
5. —Vx=(a Ap) — —Vx-a MP 3,4
6. dx(a AB) — Ixa Definition of ‘3’
7. ¥x(=f — =(a AP)) Instance of Axiom 1
8. Vx(=p = =(a AB)) = (Vx= = Yx=(a A B)) Instance of Axiom 3
9. Vx=f - VYx=(aAP) MP 7,8
10. (Vx=f = Yx=(a A B)) = (=Vx—(a A ) = =Vx—p) Instance of Axiom 1
11.  =Vx=(a A B) — —Vx-p MP 9,10
12. dx(a A ) — Ixp Definition of ‘3’
13.  (Ax(a A p) = xa) — ((Ax(a A B) — Ixp)

— (Ix(a A B) = (Txa A Jxp))) Instance of Axiom 1
14. (Ax(@ Ap) — Ixp) —» (Ax(a A B) = (Fxa A Axp))  MP6,13
15. dx(a A B) = (Axa A Ixp) MP 12, 14
Basic Model Theory

A set of formulas T is inconsistent provided T + L (where L is a formula of the
form 0 # S(0). A set of formulas T is consistent if it is not inconsistent.

Suppose that T is a set of sentences. Then Cn(T) = {¢ | T + ¢} is the set of (first-order)
consequences of T.

Suppose that A is a first-order model. Then, Th(A) = {¢ | ¢ is a sentence and A ¢}
is the theory of A. For example, Th(Nj5) is the set of sentences of Ls true in Ns; and
Th(N) is the set of sentences of L4 true in N (the theory of true arithmetic).

A set of sentences T is satisfiable if there is a model A such that A E T (where
Ak T means A | ¢ for each ¢ € T).
A theory is a set of sentences.

A theory is (effectively) axiomatizable provided there is recursive set A of sentences
(and possibly rules) such that Cn(A) = T. A theory T is finitely axiomatizable
provided there is a finite set A of sentences (and possibly rules) such that Cn(A) = T.
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A theory T (in the language L) is negation-complete provided for every sentence
of pin L, either TF @ or T + —¢.

A theory T is decidable provided the set Cn(T) is recursive.
Some useful observations and Theorem:s:

o If L is a first-order language constructed from a signature of size x (where « is a
cardinal), then | L] = max{Ny, x} (N is the first countable cardinal). Thus, there are
countably many formulas of £4.

e The set L of well-formed formulas (wff) is recursive.

o If T is effectively axiomatizable, then Cn(T) is semidecidable.

o If T is effectively axiomatizable and negation-complete, then Cn(T) is decidable.
o Model Construction Theorem. Every consistent set of formulas has a model.

o Compactness Theorem. If every finite subset of T is satisfiable, then T is satisfiable.

o Lowenheim-Skolem Theorem. If T has a model, then T has a countable model. A
model A is countable provided the domain of (A is countable (i.e., [A| is countable).
The upward Lowenheim-Skolem Theorem states that if T has a model, then it has a
model of any infinite cardinality «.

Two structures A and B are elementarily equivalent, denoted A = B, provided for
every sentence ¢, A E ¢ iff B E ¢ (i.e.,, Th(A) = Th(B)).

Definition 21 (Isomorphism) Suppose that A and B are two models. A function f :
| Al — |B| is an isomorphism provided

e f is a bijection

e TFor all constants ¢ € C, f(c™) = &

o f(Fay,...,an) = FP(f@),..., f(an)

e Forall (ay,...,a,) € P2iff (f(ay),..., f(ay) € PB

We write A = B when there is an isomorphism from A to B. <

Isomorphism Theorem. For any two first-order models if A = B, then A = B.

There are examples of structures that are elementarily equivalent but not isomorphic
(e.g., (R,<) and (Q, <) cannot be distinguished by a first-order formula, but are not
isomorphic since there is no bijection function from R to Q.)

10



Suppose that A is a first-order structure. A set X C [Al is definable (in the language
L) provided there is a formula ¢(x) with one free variable such that

X={a| AE pa)
This definition can be readily adapted to k-ary relations X C |Al.

Example. IN is not definable in the structure (R, <). Suppose it is defined by ¢(x) in
the first-order language with equality and <. Consider / : R — R defined as h(r) = r°.
Then, h is a isomorphism between (R, <) and itself (it is an automorphism). Thus, by
the Isomorphism Theorem, (R, <) E ¢(7) iff (R, <) E @(h(r)). But, then V2 ¢ N implies
(R, <) ¥ o(V2) iff (R, <) ¥ @(h(V2)) iff (R, <) I ¢(2), which is a contradiction since 2 € .

11



	Propositional Logic
	Possible Worlds

	First-Order Logic
	Substitutions
	First-Order Models
	Interpreting Terms
	First Order Models

	Deductions in First Order Logic
	Basic Model Theory


