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These notes are a very brief introduction to relational semantics for modal logic. The
goal is to provide just enough details to motivate the discussion of neighborhood seman-
tics and facilitate a comparison between the two semantics. There are many textbooks
that you can consult for more information. The following is a list of some useful texts (this
is not a complete list, but a pointer to books that covers topics related to issues discussed
in this book). 1

• Modal Logic for Open Minds (2010) by Johan van Benthem. An introductory textbook
on modal logic that is focused on the underlying theory and main philosophical
and mathematical applications.

• Modal Logic (2001) by Patrick Blackburn, Maarten de Rijke and Yde Venema. An
advanced, but very accessible, textbook foucsed on the main technical results about
propositional modal logic.

• Modal Logic (1980) by Brian Chellas. An introduction to modal logic that covers both
normal and non-normal systems.

• First Order Modal Logic (1999) by Melvin Fitting and Richard Mendelsohn. This book
provides both a philosophical and technical introduction to first-order modal logic.

∗These notes are an extended version of the Appendix from my book Neighborhood Semantics for Modal
Logic (Pacuit, 2017).

1This is not a complete list, but a pointer to books that covers topics related to issues discussed in this
book. See Chagrov and Zakharyaschev (1997); Kracht (1999); Goldblatt (1992); and Humberstone (2016) for
different perspectives on modal logic.
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1 Language and Semantics

Definition 1 (The Basic Modal Language) Suppose that At = {p, q, r, . . .} is a (finite or
countable) set of sentence letters, or atomic propositions. The set of well-formed formu-
las generated from At, denoted L(At), is the smallest set of formulas generated by the
following grammar:

p | ¬ϕ | (ϕ ∧ ψ) | �ϕ | ^ϕ

where p ∈ At. /

Additional propositional connectives (e.g., ∨,→,↔) are defined as usual. It will be con-
venient to introduce special formulas ‘>’ and ‘⊥’, meaning ‘true’ and ‘false’, respectively.
Typically, ⊥ is defined to be p ∧ ¬p (where p ∈ At) and > is ¬⊥. If the set of atomic
propositions is empty, then add ⊥ and > to the language. Examples of modal formulas
include: 2 �⊥, �^>, p → �(q ∧ r), and �(p → (q ∨ ^r)). To simplify the notation, I write
L for L(At) when the set of atomic propositions At is understood.

Remark 2 (Modal Operators) According to Definition 1,L contains two unary modal op-
erators. In this text, I will discuss languages that contain more than two unary modalities
and languages that contain modalities of other arities (e.g., the binary modality in Section
??). Furthermore, it is often convenient to define ^ϕ as ¬�¬ϕ (cf. Lemma ??).

One language, many readings. There are many possible readings for the modal operators
‘�’ and ‘^’. Here are some samples:

• Alethic Reading: �ϕ means ‘ϕ is necessary’ and ^ϕ means ‘ϕ is possible’.

• Deontic Reading: �ϕ means ‘ϕ is obligatory’ and ^ϕ means ‘ϕ is permitted’. In
this literature, ‘O’ typically is used instead of ‘�’ and ‘P’ instead of ‘^’.

• Epistemic Reading: �ϕmeans ‘ϕ is known’ and^ϕmeans ‘ϕ is consistent with the
knower’s current information’. In this literature, ‘K’ typically is used instead of ‘�’
and ‘L’ instead of ‘^’.

• Temporal Reading: �ϕmeans ‘ϕwill always be true’ and^ϕmeans ‘ϕwill be true
at some point in the future’. In this literature, ‘G’ typically is used instead of ‘� and
‘F’ instead of ‘^’.

I conclude this brief introduction to the basic modal language with the standard definition
of a substitution between formulas.

Definition 3 (Substitution) A substitution σ is a function from atomic propositions to
well-formed formulas: σ : At → L(At). A substitution σ is extended to a function on all
formulas, denoted σ : L(At)→ L(At), by recursion on the structure of the formulas:

2To simplify the presentation, I will typically drop the outermost parentheses.
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1. σ(p) = σ(p)

2. σ(ϕ ∧ ψ) = σ(ϕ) ∧ σ(ψ)

3. σ(�ϕ) = �σ(ϕ)

4. σ(^ϕ) = ^σ(ϕ)

For simplicity, I will often identify σ and σ and write ϕσ for σ(ϕ). /

For example, if σ(p) = �^(p ∧ q) and σ(q) = p ∧ �q, then

(�(p ∧ q)→ �p)σ = �((�^(p ∧ q)) ∧ (p ∧ �q))→ �(�^(p ∧ q)).

Exercise 1

1. Suppose that σ(p) = �q and σ(q) = (p→ �q). Find (�(p→ q)→ (�p→ �q))σ.

2. Suppose that σ(p) = ¬p. Find (�p↔ ¬^¬p)σ.

3. Show that ϕσ = ϕ iff σ(p) = p for all atomic propositions p occurring in ϕ.

Definition 4 (Relational Frame and Model) A relational frame is a tuple 〈W,R〉 where
W is a nonempty set (elements of W are called states), R ⊆ W ×W is a relation on W. A
relational model (also called a Kripke model) is a triple M = 〈W,R,V〉 where 〈W,R〉 is
a relational frame and V : At → ℘(W) is a valuation function assigning sets of states to
atomic propositions. /

Example 5 The following picture represents the relational structureM = 〈W,R,V〉 where W =
{w1,w2,w3,w4},

R = {(w1,w2), (w1,w3), (w1,w4), (w2,w2), (w2,w4), (w3,w4)}

and V(p) = {w2,w3} and V(q) = {w3,w4}.

pw2

pw1 q w4

p, qw3

Formulas of L are interpreted at states in a relational model.
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Definition 6 (Truth of Modal Formulas) Suppose thatM = 〈W,R,V〉 is a relational model.
Truth of a modal formula ϕ ∈ L(At) at a state w inM, denotedM,w |= ϕ, is defined in-
ductively as follows:

1. M,w |= p iff w ∈ V(p) (where p ∈ At)

2. M,w |= > andM,w 6|= ⊥

3. M,w |= ¬ϕ iffM,w 6|= ϕ

4. M,w |= ϕ ∧ ψ iffM,w |= ϕ andM,w |= ψ

5. M,w |= �ϕ iff for all v ∈W, if wRv thenM, v |= ϕ

6. M,w |= ^ϕ iff there is a v ∈W such that wRv andM, v |= ϕ /

Two remarks about this definition. First, note that truth for the other boolean con-
nectives (→,∨,↔) is not given in the above definition. This is not necessary since these
connectives are definable from ‘¬’ and ‘∧’. 3 As an exercise, make sure you can specify
the truth definition in the style of the definition above for each of the boolean connectives
not mentioned. Second, note the analogy between ‘�’ and the universal quantifier and
‘^’ and the existential quantifier.

Remark 7 (Truth Set) Suppose thatM = 〈W,R,V〉 is a relational model. For each ϕ ∈ L,
let [[ϕ]]M = {w ∈ W | M,w |= ϕ} be the truth set of ϕ (in M). Formally, we can adapt
the clauses discussed in Section ?? to define a function [[·]]M : L → ℘(W) (recall that
℘(W) = {X | X ⊆W} is the powerset of W).

Example 8 To illustrate the above definition of truth of modal formula, recall the relational model
from Example 5:

pw2

pw1 q w4

p, qw3

• M,w3, |= �q: w4 is the only worlds accessible from w3 and q is true at w4.

3For example, ϕ→ ψ can be defined as (i.e., is logically equivalent to) ¬(ϕ ∧ ¬ψ).

4



• M,w1 |= ^q: there is a state accessible from w1 (namely w3) where q is true.

• M,w1 |= ^�q: w3 is accessible from w1 and q is true in all of the worlds accessible from w3.

• M,w4 |= �⊥: there are no worlds accessible from w4, so any formula beginning with ‘�’
will be true (this is analogous to the fact the universal sentences are true in any first-order
structure where the domain is empty). Similarly, any formula beginning with a ‘^’ will be
false (again, this is analogous to the fact that existential statements are false in first-order
structures with empty domains). /

For an extended discussion surrounding the interpretation modal formulas in rela-
tional models, see Chapter 2 of (van Benthem, 2010).

Exercise 2 Consider the following relational model.

pw1

q w2 q w3

q

w4

p

w5

p w6

1. �q→ ��q

2. ��q→ �q

3. ^(^q ∧^p)

4. ^�⊥

5. �(�q→ q)→ �q

For each formula to the right, list the states where the formula is true.

Exercise 3 Consult http://pacuit.org/modal/tutorial/ for more examples to test your
understanding of the definition of truth for modal formulas over relational models.

2 Validity

Definition 9 (Validity) A modal formula ϕ ∈ L is valid in a relational model M =
〈W,R,V〉, denotedM |= ϕ, providedM,w |= ϕ for each w ∈ W. Suppose that F = 〈W,R〉
is a relational frame. A modal formula ϕ ∈ L is valid on F , denoted F |= ϕ, provided
M |= ϕ for all models based on F (i.e., all modelsM = 〈F ,V〉). Suppose that F is a class
of relational frames. A modal formula ϕ is valid on F, denoted |=F ϕ, provided F |= ϕ for
all F ∈ F. If F is the class of all relational frames, then I will write |= ϕ instead of |=F ϕ. /

In order to show that a modal formula ϕ is valid, it is enough to argue informally that ϕ
is true at an arbitrary state in an arbitrary relational model. On the other hand, to show
a modal formula ϕ is not valid, one must provide a counter example (i.e., a relational
model and state where ϕ is false).
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Fact 10 �ϕ ∧ �ψ→ �(ϕ ∧ ψ) is valid.

Proof. SupposeM = 〈W,R,V〉 is an arbitrary relational model and w ∈ W an arbitrary
state. We will show M,w |= �ϕ ∧ �ψ → �(ϕ ∧ ψ). Suppose that M,w |= �ϕ ∧ �ψ.
Then M,w |= �ϕ and M,w |= �ψ. Suppose that v ∈ W and wRv. Then M, v |= ϕ and
M, v |= ψ. Hence,M, v |= ϕ ∧ ψ. Since v is an arbitrary state accessible from w, we have
M,w |= �(ϕ ∧ ψ). qed

Fact 11 (^ϕ ∧^ψ)→ ^(ϕ ∧ ψ) is not valid.

Proof. We must find a relational model that has a state where an instance of (^ϕ∧^ψ)→
^(ϕ ∧ ψ) is false. Consider the following instance of the above formula: (^p ∧ ^q) →
^(p ∧ q), and letM = 〈W,R,V〉 be the following relational model:

w1

p w2 q w3

We have that M,w1 |= ^p ∧ ^q (why?), but M,w1 6|= ^(p ∧ q) (why?). Hence, M,w1 6|=
(^p ∧^q)→ ^(p ∧ q). qed

Exercise 4 Determine which of the following formulas are valid (prove your answers):

1. �ϕ→ ^ϕ

2. �(ϕ ∨ ¬ϕ)

3. �(ϕ→ ψ)→ (�ϕ→ �ψ)

4. �ϕ→ ϕ

5. ϕ→ �^ϕ

6. ^(ϕ ∨ ψ)→ ^ϕ ∨^ψ

3 Definability

Remark 7 explains how to assign to every modal formula ϕ ∈ L a set of states in a
relational modelM = 〈W,R,V〉 (i.e., the truth set of ϕ, denoted [[ϕ]]M). It is natural to ask
about the converse: Given and arbitrary set, when does a formula uniquely pick out that
set?

Definition 12 (Definable Subsets) LetM = 〈W,R,V〉 be a relational model. A set X ⊆W
is definable inM provided X = [[ϕ]]M for some modal formula ϕ ∈ L. /

Example 13 All four of the states in the relational model below are uniquely defined by a modal
formula:
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w2

w1 w4

w3

• {w4} is defined by �⊥
(w4 is the only “dead-end” state)

• {w3} is defined by ^�⊥ ∧ ��⊥
(w3 can only see a “dead-end” state)

• {w2} is defined by ^^^>
(w2 is the only state where 3 steps can be taken)

• {w1} is defined by ^(^�⊥ ∧ ��⊥)
(w1 is the only state that can see w3)

Given the above observations, it is not hard to see that all subsets of W = {w1,w2,w3,w4} are
definable (why?). However, note that even in finite relational models, not all subsets may be
definable. A problem can arise if states cannot be distinguished by modal formulas. For example, if
the reflexive arrow is dropped in the relational model above, then w2 and w3 cannot be distinguished
by a modal formula (there are ways to formally prove this, but see if you can informally argue why
w2 and w3 cannot be distinguished).

The next two definitions make precise what it means for two states to be indistinguish-
able by a modal formula.

Definition 14 (Modal Equivalence) LetM1 = 〈W1,R1,V1〉 andM2 = 〈W2,R2,V2〉 be two
relational models. We sayM1,w2 andM2,w2 are modally equivalent provided

for all modal formulas ϕ ∈ L,M1,w1 |= ϕ iffM2,w2 |= ϕ

We writeM1,w1!M2,w2 ifM1,w1 andM2,w2 are modally equivalent. (Note that it is
assumed w1 ∈W1 and w2 ∈W2) /

Definition 15 (Bisimulation) LetM1 = 〈W1,R1,V1〉 andM2 = 〈W2,R2,V2〉 be two rela-
tional models. A nonempty relation Z ⊆ W1 ×W2 is called a bisimulation provided for
all w1 ∈W1 and w2 ∈W2, if w1Zw2 then

1. (atomic harmony) For all p ∈ At, w1 ∈ V1(p) iff w2 ∈ V2(p).

2. (zig) If w1R1v1 then there is a v2 ∈W2 such that w2R2v2 and v1Zv2.

3. (zag) If w2R2v2 then there is a v1 ∈W1 such that w1R1v1 and v1Zv2.

We writeM1,w1 ↔M2,w2 if there is a bisimulation relating w1 with w2. /

Definition 14 and 15 provide two concrete ways to answer the question: when are two
states the same? The following is a very useful (and instructive!).

Exercise 5 1. Prove that! and ↔ are equivalence relations.
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2. Prove that if X is a definable subset ofM = 〈W,R,V〉, then X is closed under the! relation
(if w ∈ X andM,w!M, v then v ∈ X).

3. Prove that there is a largest bisimulation: given {Zi | i ∈ I} a set of bisimulations relating
the relational models M1 = 〈W1,R1,V1〉 and M2 = 〈W2,R2,V2〉 (i.e., for each i ∈ I,
Zi ⊆W1 ×W2 satisfies Definition 15), show that the relation Z =

⋃
i∈I Zi is a bisimulation.

Example 16 (Bisimulation Example) The dashed lines is a bisimulation between the fol-
lowing two relational models (for simplicity, we do assume that all atomic propositions
are false):

w1

w2

w3

w4

w5

v1

v2

v3

On the other hand, there is no bisimulation relating the states x and y in the following
two relational models:

x

x1

y

y1

y2

y3

Using Lemma 17 below, we can prove that there is no bisimulation relating x and y. We
first note that �(^�⊥∨ �⊥) is true at state x but not true at state y. Then by Lemma 17, x
and y cannot be bisimilar.

Lemma 17 (Modal Invariance Lemma) SupposeM1 = 〈W1,R1,V1〉 andM2 = 〈W2,R2,V2〉

are relational models. For all w ∈W1 and v ∈W2, ifM1,w↔M2, v thenM1,w!M2, v.

Proof. Suppose that M1,w ↔ M2, v. Then, there is a bisimulation Z such that wZv.
The proof is by induction on the structure of ϕ. The base case is when ϕ is p, an atomic
proposition. By the atomic harmony condition, since wZv, we have V1(w, p) = V2(v, p).
Hence,M1,w |= p iffM2, v |= p. There are three cases to consider:
Case 1: ϕ is ψ1 ∧ ψ2. Then,
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M1,w |= ψ1 ∧ ψ2 iff M1,w |= ψ1 andM1,w |= ψ2 (Def. of Truth)
iff M2, v |= ψ1 andM2, v |= ψ2 (Induction hypothesis)
iff M2, v |= ψ1 ∧ ψ2 (Def. of truth)

Case 2: ϕ is ¬ψ. Then,

M1,w |= ¬ψ iff M1,w 6|= ψ (Def. of Truth)
iff M2, v 6|= ψ (Induction hypothesis)
iff M2, v |= ¬ψ (Def. of truth)

Case 3: ϕ is �ψ. Suppose thatM1,w |= �ψ. Then for each w′, if wR1w′, thenM1,w′ |= ψ.
We will show thatM2, v |= �ψ. Let v′ be any state in W2 with vR2v′. By the zig condition,
there is a w′ ∈ W1 such that wR1w′ and w′Zv′. Since M1,w |= �ψ and wR1w′, we have
M1,w′ |= ψ. By the induction hypothesis,M2, v′ |= ψ. Since v′ is an arbitrary state with
vR2v′, we have M2, v |= �ψ. The converse direction is similar (it makes use of the zag
condition). qed

Lemma 18 SupposeM1 = 〈W1,R1,V1〉 andM2 = 〈W2,R2,V2〉 are finite relational models. If
M1,w1!M2,w2 thenM1,w1 ↔M2,w2.

Proof. We show that! is a bisimulation. The atomic harmony condition is obvious.
We prove the zag condition. Suppose thatM1,w1 !M2,w2, w2R2v2, but there is no v1
such that w1R1v1 andM1, v1!M2, v2. Note that there are only finitely many states that
are accessible from w1. That is, {w | w1R1w} is a finite set. Suppose that {w | w1R1w} =
{w1,w2, . . . ,wm

}. By assumption, for each wi we haveM1,wi
6!M2, v2. Hence, for each

wi, there is a formulaϕi such thatM1,wi
6|= ϕi butM2, v2 |= ϕi. Then,M2, v2 |=

∧
i=1,...,m ϕi.

Since w2R2v2, we have M2,w2 |= ^
∧

i=1,...,m ϕi. Therefore, M1,w1 |= ^
∧

i=1,...,m ϕi. But
this is a contradiction, since the only states accessible from w1 are w1, . . . ,wm, and for each
wi there is a ϕi such thatM1,wi

6|= ϕi. The proof of the zag condition is similar. qed

The modal invariance Lemma (Lemma 17) can be used to prove what can and cannot
be expressed in the basic modal language.

Fact 19 LetM = 〈W,R,V〉 be a relational model. The universal operator is a unary operator
[A]ϕ defined as follows:

M,w |= [A]ϕ iff for all v ∈W,M, v |= ϕ

The universal operator [A] is not definable in the basic modal language.

Proof. Suppose that the universal operator is definable in the basic modal language.
Then there is a basic modal formula α(·) such4 that for any formula ϕ and any relational

4The notation α(·) means that α is a basic modal formula with “free slots” such that α(ϕ) is a well formed
modal formula with ϕ plugged into the free slots.
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structureM with state w, we haveM,w |= [A]ϕ iffM,w |= α(ϕ). Consider the relational
modelM = 〈W,R,V〉 with W = {w1,w2}, R = {(w1,w2)} and V(w1, p) = V(w2, p) = T. Note
thatM,w1 |= [A]p. Since the universal operator is assumed to be defined by α(·), we must
haveM,w1 |= α(p). Consider the relational modelM′ = 〈W′,R′,V′〉with W′ = {v1, v2, v3},
R′ = {(v1, v2), (v3, v1)} and V′(v1, p) = V′(v2, p) = T. Note that Z = {(w1, v2), (w2, v2)} is
a bismulation relating w1 and v1 (i.e., M,w1 ↔ M

′, v1). These relational models and
bisimulation is pictured below:

pw1

pw2

p v1

p v2 p v3

By Lemma 17, M,w1 ! M
′, v1. Therefore, since α(p) is a formula of the basic modal

language and M,w1 |= α(p), we have M′, v1 |= α(p). Since α(p) defines the universal
operator,M′, v1 |= [A]p, which is a contradiction. Hence, [A] is not definable in the basic
modal language. qed

Fact 20 Let M = 〈W,R,V〉 be a relational model. Define the “exists two” operator ^2ϕ as
follows:

M,w |= ^2ϕ iff there is v1, v2 ∈W such that v1 , v2,M, v1 |= ϕ andM, v2 |= ϕ

The exist two ^2 operator is not definable in the basic modal language.

Proof. Suppose that the ^2 is definable in the basic modal language. Then there is
a basic modal formula α(·) such that for any formula ϕ and any relational model M
with state w, we have M,w |= ^2ϕ iff M,w |= α(ϕ). Consider the relational model
M = 〈W,R,V〉 with W = {w1,w2,w3}, R = {(w1,w2), (w1,w3)} and V(p) = {w2,w3}. Note
thatM,w1 |= ^2p. Since ^2 is assumed to be defined by α(·), we must haveM,w1 |= α(p).
Consider the relational model M′ = 〈W′,R′,V′〉 with W′ = {v1, v2}, R′ = {(v1, v2)} and
V′(p) = {v2}. Note that Z = {(w1, v1), (w2, v2), (w3, v2)} is a bismulation relating w1 and v1
(i.e.,M,w1 ↔M

′, v1). By Lemma 17,M,w1!M′, v1. Therefore, since α(p) is a formula
of the basic modal language andM,w1 |= α(p), we haveM′, v1 |= α(p). Since α(·) defines
^2,M′, v1 |= ^2p, which is a contradiction. Hence, ^2 is not definable in the basic modal
language. qed

3.1 Defining Classes of Structures

The basic modal language can also be used to define classes of structures.
Suppose that P is a property of relations (eg., reflexivity or transitivity). We say a

frame F = 〈W,R〉 has property P provided R has property P. For example,
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• F = 〈W,R〉 is called a reflexive frame provided R is reflexive, i.e., for all w ∈ W,
wRw.

• F = 〈W,R〉 is called a transitive frame provided R is transitive, i.e., for all w, x, v ∈W,
if wRx and xRv then wRv.

Definition 21 (Defining a Class of Frames) A modal formulaϕdefines the class of frames
with property P provided for all frames F , F |= ϕ iff F has property P. /

Remark 22 (Remark on validity on frames) Note that if F |= ϕ where ϕ is some modal
formula, then F |= ϕ∗ where ϕ∗ is any substitution instance of ϕ. That is, ϕ∗ is obtained
by replacing sentence letters in ϕ with modal formulas. In particular, this means, for
example, that in order to show that F 6|= �ϕ → ϕ it is enough to show that F 6|= �p → p
where p is a sentence letter. (This will be used in the proofs below).

Fact 23 �ϕ→ ϕ defines the class of reflexive frames.

Proof. We must show for any frame F , F |= �ϕ→ ϕ iff F is reflexive.

(⇐) Suppose that F = 〈W,R〉 is reflexive and letM = 〈W,R,V〉 be any model based on
F . Given w ∈ W, we must showM,w |= �ϕ → ϕ. Suppose thatM,w |= �ϕ. Then for
all v ∈ W, if wRv thenM, v |= ϕ. Since R is reflexive, we have wRw. Hence, M,w |= ϕ.
Therefore,M,w |= �ϕ→ ϕ, as desired.

(⇒) We argue by contraposition. Suppose that F is not reflexive. We must show
F 6|= �ϕ → ϕ. By the above Remark, it is enough to show F 6|= �p → p for some
sentence letter p. Since F is not reflexive, there is a state w ∈W such that it is not the case
that wRw. Consider the modelM = 〈W,R,V〉 based on F with V(p) = {v | v , w}. Then
M,w |= �p since, by assumption, for all v ∈W if wRv, then v , w and so v ∈ V(p). Also, no-
tice that by the definition of V,M,w 6|= p. Therefore,M,w |= �p∧¬p, and so,F 6|= �p→ p.

(⇒, directly) Suppose that F |= �ϕ→ ϕ. We must show that for all x if xRx. Let x be any
state and consider a modelM based on F with a valuation V(p) = {u | xRu}. Since �p is
true at x we also have p true at x. This means that x ∈ V(p), hence, xRx. qed

Fact 24 �ϕ→ ��ϕ defines the class of transitive frames.

Proof. We must show for any frame F , F |= �ϕ→ ��ϕ iff F is transitive.

(⇐) Suppose that F = 〈W,R〉 is transitive and letM = 〈W,R,V〉 be any model based on
F . Given w ∈ W, we must show M,w |= �ϕ → ��ϕ. Suppose that M,w |= �ϕ. We
must showM,w |= ��ϕ. Suppose that v ∈ W and wRv. We must showM, v |= �ϕ. To
that end, let x ∈ W be any state with vRx. Since R is transitive and wRv and vRx, we
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have wRx. SinceM,w |= �ϕ, we haveM, x |= ϕ. Therefore, since x is an arbitrary state
accessible from v,M, v |= �ϕ. Hence,M,w |= ��ϕ, and so,M,w |= �ϕ→ ��ϕ, as desired.

(⇒, by contraposition) We argue by contraposition. Suppose that F is not transitive. We
must show F 6|= �ϕ→ ��ϕ. By the above Remark, it is enough to show F 6|= �p→ ��p
for some sentence letter p. Since F is not transitive, there are states w, v, x ∈ W with
wRv and vRx but it is not the case that wRx. Consider the model M = 〈W,R,V〉 based
on F with V(p) = {y | y , x}. SinceM, x 6|= p and wRv and vRx, we haveM,w 6|= ��p.
Furthermore,M,w |= �p since the only state where p is false is x and it is assumed that it
is not the case that wRx. Therefore,M,w |= �p∧¬��p, and so,F 6|= �p→ ��p, as desired.

(⇒, directly) Suppose that F |= �ϕ → ��ϕ. We must show that for all x, y, z if xRy and
yRz then xRz. Let x be any state and consider a modelM based on F with a valuation
V(p) = {u | xRu}. Since �p is true at x we also have ��p true at x. This means that for all y
if xRy then (for all z if yRz we have z ∈ V(p)). Recall that z ∈ V(p) means that xRz. Putting
everything together we have: for all y if xRy then for all z if yRz then xRz. qed

Fact 25 ^�ϕ→ �^ϕ defines the confluence property: for all x, y, z if xRy and xRz then there is
a s such that yRs and zRs.

Proof. We must show for any frame F , F |= ^�ϕ → �^ϕ iff F satisfies the confluence
property: for all x, y, z if xRy and xRz then there is a s such that yRs and zRs.

(⇐) Suppose that F = 〈W,R〉 satisfies confluence and let M = 〈W,R,V〉 be any model
based on F . Given w ∈ W, we must show M,w |= ^�ϕ → �^ϕ. Suppose that
M,w |= ^�ϕ. We must show M,w |= �^ϕ. Suppose that x ∈ W with wRx. Since
M,w |= ^�ϕ, there is a y such that wRy and M, y |= �ϕ. Since wRx and wRy, by the
confluence property, there is a s ∈ W with xRs and yRs. Since yRs and M, y |= ^ϕ, we
haveM, s |= ϕ. Then, since xRs, we haveM, x |= ^ϕ. Hence,M,w |= �^ϕ, as desired.

(⇒, by contraposition) We argue by contraposition. Suppose that F does not satisfy con-
fluence. We must show F 6|= ^�ϕ → �^ϕ. By the above Remark, it is enough to show
F 6|= ^�p → �^p for some sentence letter p. Since F does not satisfy confluence, there
are states w, x, y ∈W with wRx and wRy but there is no s such that xRs and yRs. Consider
the model M = 〈W,R,V〉 based on F with V(p) = {v | yRv}. Then, M, y |= �p (since
all states accessible from y satisfy p). Since there is no s such that xRs and yRs, we also
haveM, x 6|= ^p. Since wRx and wRy, we haveM,w 6|= �^p andM,w |= ^�p. Hence,
^�p→ �^p is not valid.

(⇒, directly) Suppose that F |= ^�ϕ→ �^ϕ. We must show that for all x, y, z if xRy and
xRz, then there is a s such that yRs and zRs. Let x be any state and consider a modelM
based on F with a valuation V(p) = {u | yRu}. Let y, z be states with xRy and xRz. Since,
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M, y |= �p, we have M, x |= ^�p. This means that M, x |= �^p. Hence, since xRz, we
haveM, z |= ^p. Thus, there is a states v such that zRv and v ∈ V(p). Since v ∈ V(p), we
have yRv. Putting everything together we have: for all x, y, z if xRy and xRz, then there is
a s such that yRs and zRs. qed

Exercise 6 Determine which class of frames are defined by the following modal formulas.

1. �ϕ→ ^ϕ

2. ^ϕ→ �ϕ

3. ϕ→ �^ϕ

4. ¬�ϕ→ �¬�ϕ

5. �(�ϕ→ ϕ)

6. ��ϕ→ �ϕ

4 Normal Modal Logics

Recall the definition of a substitution for modal formulas (Definition 3).

Definition 26 (Tautology) A modal formula ϕ is called a (propositional) tautology if
ϕ = (α)σ where σ is a substition, α is a formula of propositional logic and α is a tautology.
adsfasdfasdf asdfasdf /

For example, �p → (^(p ∧ q) → �p) is a tautology because a → (b → a) is a tautology in
the language of propositional logic and

(a→ (b→ a))σ = �p→ (^(p ∧ q)→ �p)

where σ(a) = �p and σ(b) = ^(p ∧ q).
The definition of the minimal normal modal logic K is given in Section ??. The follow-

ing axiom schemes have played an important role in both the mathematical development
of modal logic and in applications of modal logic.

(K) �(ϕ→ ψ)→ (�ϕ→ �ψ)
(D) �ϕ→ ^ϕ

(T) �ϕ→ ϕ

(4) �ϕ→ ��ϕ

(5) ¬�ϕ→ �¬�ϕ

(L) �(�ϕ→ ϕ)→ �ϕ

Each of the above formulas are called axiom schemas and I will often refer to instances
of these axiom schemas. The general idea is to treat the ‘ϕ’ in the above formulas as a
meta-variable that can be replaced by specific formulas from L. For instance, �^p→ ^p
is a substitution instance of the axiom scheme (T).

The minimal normal modal logic, K, is the smallest set of formulas that contains all
tautologies, all instances of (K), all instances of (Dual), and is closed under the rules (Nec)
(from ϕ infer �ϕ) and Modus Ponens (from ϕ and ϕ → ψ infer ψ). Other normal modal
logics are defined by adding all instances of axiom schema or rules to K. If A1, . . . ,An are
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axiom schemas, then K + A1 + A2 + · · · + An is the smallest set of formulas that contains
all tautologies, all instances of K, all instances of Dual,5 for each i = 1, . . . ,n, all instances
of Ai, and is closed under the rules (Nec) (from ϕ infer �ϕ) and (MP) (from ϕ and ϕ→ ψ
infer ψ).

Remark 27 (Rules) Of course, one may also be interested in defining modal logics by
adding new rules to K. Similar notation can be used to define extensions of K with new
rules—e.g., if R is a rule then K + R is the smallest set of formulas that contain K and is
closed under the rule R.

Using the above naming convention for logics, I can now define a number of well-studied
normal modal logics:

T is K + (T)
S4 is K + (T) + (4)
S5 is K + (T) + (4) + (5)

KD45 is K + (D) + (4) + (5)
GL is K + (L)

Definition 28 (Deduction) Suppose that L is an extension of K defined from axiom
schemas A1, . . . ,Ak. A deduction in L is a finite sequence of formulas 〈α1, . . . , αn〉 where
for each i ≤ n either

1. αi is a tautology

2. αi is an instance of K

3. αi is an instance of A j for some j = 1, . . . , k

4. αi is of the form �α j for some j < i

5. αi follows by Modus Ponens from earlier formulas (i.e., there is j, k < i such that αk
is of the form α j → αi).

Write `K ϕ if there is a deduction containing ϕ (i.e., in which ϕ is the last formula in a
deduction). /

5The axiom schema (Dual), i.e., �ϕ ↔ ¬^¬ϕ, is needed when � and ^ are treating as basic operators in
the language (rather than taking one to be a defined operator).
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Fact 29 `K (�ϕ ∧ �ψ)→ �(ϕ ∧ ψ)

Proof.

1. ϕ→ (ψ→ (ϕ ∧ ψ)) propositional tautology
2. �(ϕ→ (ψ→ (ϕ ∧ ψ))) (Nec) 1
3. �(ϕ→ (ψ→ (ϕ ∧ ψ)))→ (�ϕ→ �(ψ→ (ϕ ∧ ψ))) instance of (K)
4. �ϕ→ �(ψ→ (ϕ ∧ ψ)) (MP) 2,3
5. �(ψ→ (ϕ ∧ ψ))→ (�ψ→ �(ϕ ∧ ψ) instance of (K)
6. (a→ b)→ ((b→ c)→ (a→ c)) propositional tautology

a := �ϕ, b := �(ψ→ (ϕ ∧ ψ)),
c := �ψ→ �(ϕ ∧ ψ)

7. (b→ c)→ (a→ c) (MP) 4,6
a := �ϕ, b := �(ψ→ (ϕ ∧ ψ)),
c := �ψ→ �(ϕ ∧ ψ)

8. �ϕ→ (�ψ→ �(ϕ ∧ ψ)) (MP) 5,7
9. (a→ (b→ c))→ ((a ∧ b)→ c) propositional tautology

a := �ϕ, b := �ψ, c = �(ϕ ∧ ψ),
10. (�ϕ ∧ �ψ)→ �(ϕ ∧ ψ) (MP) 8, 9

adfasd qed

Fact 30 `K �(ϕ ∧ ψ)→ (�ϕ ∧ �ψ)

Proof.

1. ϕ ∧ ψ→ ϕ propositional tautology
2. �((ϕ ∧ ψ)→ ϕ) (Nec) 1
3. �((ϕ ∧ ψ)→ ϕ)→ (�(ϕ ∧ ψ)→ �ϕ) instance of (K)
4. �(ϕ ∧ ψ)→ �ϕ (MP) 2,3
5. ϕ ∧ ψ→ ψ propositional tautology
6. �((ϕ ∧ ψ)→ ψ) (Nec) 5
7. �((ϕ ∧ ψ)→ ϕ)→ (�(ϕ ∧ ψ)→ �ψ) instance of (K)
8. �(ϕ ∧ ψ)→ �ψ (MP) 5,6
9. (a→ b)→ ((a→ c)→ (a→ (b ∧ c))) propositional tautology

(a := �(ϕ ∧ ψ), b := �ϕ, c := �ψ)
10. (a→ c)→ (a→ (b ∧ c)) (MP) 4,9
11. �(ϕ ∧ ψ)→ �ϕ ∧ �ψ (MP) 8,10

adfasd qed

Definition 31 (Deduction with Assumptions) Suppose that Γ is a set of modal formulas
and L is an extension of K. We say that ϕ is deducible from Γ provided that there are
finitely many formulas α1, . . . , αk ∈ Γ such that `L (α1 ∧ · · · ∧ αk)→ ϕ. /
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Remark 32 (Comments on Necessitation) Note that the side condition in item 4. in the
above definition is crucial. Without it, one application of Necessitation shows that {p} `K
�p. Using a deduction theorem stating that Σ;α `K β implies Σ `K α→ β, we can conclude
that `K p→ �p. But, clearly p→ �p cannot be a theorem of K (why?).

Definition 33 (Semantic Consequence) Suppose that Γ is a set of modal formulas and F
is a class of relational frames. We say ϕ is a semantic consequence of Γ with respect to
F, denoted Γ |=F ϕ, provided for all modelsM = 〈W,R,V〉 based on a frame from F (i.e.,
〈W,R〉 ∈ F) and all states w ∈ W, if M,w |= Γ, then M,w |= ϕ (where M,w |= Γ when
M,w |= γ for all γ ∈ Γ). /

Definition 34 (Soundness, Weak/Strong Completeness) Suppose that F is a class of re-
lational frames. A logic L is sound with respect to F provided, for all sets of formulas Γ, if
Γ `L ϕ, then Γ |=F ϕ. A logic L is strongly complete with respect to F provided for all sets
of formulas Γ, if Γ |=F ϕ, then Γ `L ϕ. Finally, a logic L is weakly complete with respect
to F provided that for all ϕ ∈ L, if |=F ϕ, then `L ϕ. /

Clearly, if a logic is strongly complete then it is weakly complete. Interestingly, the
converse is not true (as we will see below). The proofs of the following theorem can be
found in Blackburn et al. (2001).

Theorem 35 (Completeness Theorems) • K is sound and strongly complete with respect
to the class of all relational frames.

• T is sound and strongly complete with respect to the class of reflexive relational frames.

• S4 is sound and strongly complete with respect to the class of reflexive and transitive
relational frames.

• S5 is sound and strongly complete with respect to the class of reflexive, transitive and
Euclidean relational frames (i.e., relations that form a partition).

• KD45 is sound and strongly complete with respect to the class of serial, transitive and
Euclidean relational frames (i.e., relations that form a quasi-partition).

The logic GL does not follow the same pattern as the logics mentioned in the above
theorem. There is a natural class of relational frames that characterizes GL. A relation
R ⊆ W × W is converse well-founded (also called Noetherian) if there is no infinite
ascending chain of states—i.e., there is no infinite set of distinct elements w0,w1, . . . from
W, such that w0 R w1 R w2 · · · . Note that if R is converse well-founded, then it is
irreflexive (for all w ∈ W, w 6R w). It is not hard to see that G is sound with respect
to the class of frames that are transitive and converse well-founded. However, GL is
not strongly complete with respect to this class of frames. To see this, we need some
additional notation.
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Definition 36 (Compactness) Suppose that L is sound with respect to some class of
frames F. We say that L is compact provided that for any set of formulas Γ, if Γ is
finitely satisfiable (every finite subset of formulas is satisfiable), then Γ is satisfiable. /

Proposition 37 If L is sound and strongly complete with respect to some class of frames F, then
L is compact.

Proof. Suppose that L is sound and strongly complete with respect to some class of
frames F. Suppose that Γ is any set of formulas that is finitely satisfiable. I.e., every
finite subset Γ0 ⊆ Γ has a model (based on a frame from F). If Γ is not satisfiable, then,
since every consistent set is satisfiable, Γ is inconsistent. I.e., Γ `L ⊥. This means that
there is a deduction from Γ in L of ⊥. Since deductions are finite in length, only finitely
many assumptions from Γ can be used in the deduction. This means that there is a finite
subset Γ0 ⊆ Γ such that Γ0 `L ⊥. By soundness, this means that Γ0 is not satisfiable. This
contradicts our assumption. Thus Γ is satisfiable. qed

Observation 38 The logic GL is not strongly complete with respect to the class of transitive and
converse well-founded relational frames.

Proof. We will show that GL is not compact. Then, by Proposition 37, we can conclude
that GL is not strongly complete. Suppose that

Γ = {^p0,�(p0 → ^p1),�(p1 → ^p2), . . . ,�(pn → ^pn+1), . . .}.

Suppose that Γ0 ⊆ Γ is finite. We will show that Γ0 is satisfiable. First of all, note
that without loss of generality we can assume that Γ0 = {^p0,�(p0 → ^p1),�(p1 →

^p2), . . . ,�(pk−1 → ^pk)}. (If ^p0 < Γ0, then since Γ0 only contains formulas with � as
the main connective, and so, a single state with no accessible worlds will make all the
formulas in Γ0 true.) We can construct a modelM = 〈W,R,V〉 with a state that makes all
of Γ0 true. Suppose that W = {w,w0,w1, . . . ,wk} and let R be the transitive closure of

w R w0 R w1 · · ·wk−1 R wk

That is, R is the smallest transitive relation that contains

R0 = {(w,w0), (w0,w1), . . . , (w j,w j+1), . . . , (wk−1,wk)}.

Furthermore, suppose that V : {p0, . . . , pk} → ℘(W) is the valuation function defined as
follows: V(pi) = {wi} for i = 0, . . . , k. Then, since M,w0 |= p0 and w R w0, we have
M,w |= ^p0. Furthermore, if w′ ∈ W is a state such that w R w′ then w′ = wi for some
i = 0, . . . , k. If i , 0, thenM,w′ 6|= p0. Thus, trivially, M,w′ |= p0 → ^p1. If i = 0, then,
since w0 R w1 andM,w1 |= p1, we have thatM,w0 |= p0 → ^p1. Thus,M,w0 |= p0 → ^p1.
Hence,M,w |= �(p0 → ^p1). A similar argument shows thatM,w |= �(p j → ^p j+1) for
j = 0, . . . , k − 1. Thus,M,w satisfies Γ0.
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However, it is not hard to see that there is no that is transitive and converse well-
founded model with a state satisfying all of Γ. Suppose that there is a modelM = 〈W,R,V〉
and state w ∈ W such that M,w |= ϕ for all ϕ ∈ Γ. Since w |= ^p0 there must be some
accessible world w′ such thatM,w′ |= p0. It must be the case that w′ , w (otherwise, R
is not converse well-founded). Since M,w |= �(p0 → ^p1) and w R w′, we must have
M,w′ |= p0 → ^p1. Hence there is some world w′′ such that w′ R w′′ andM,w′′ |= p1.
Since R is transitive, we must have w R w′′. Since R is converse well-founded, we must
have w′′ , w. Continuing in this manner, we construct an infinite chain of worlds that
are R-accessible, contradicting the assumption that R is converse well-founded. Thus, Γ
is not satisfiable on any model that is converse well-founded. qed

Nonetheless, Segerberg (1971) proved a weak completeness theorem for GL. The proof
is beyond the scope of this Appendix (see Blackburn et al. (2001) for the details).

Theorem 39 The logic GL is sound and weakly complete with respect to the class of transitive
and converse well-founded frames.
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