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Partial-State Frame

A partial-state frame is a tuple F = 〈S ,R ,v,P〉 where

1. S is a nonempty set (the set of states)
2. v is a partial order on S (the refinement relation)
3. R is a binary relation on S (the accessibility relation —

possibly more than one)
4. P is a subset of ℘(S) such that ∅ ∈ P and for all X ,Y ∈ P:

4.1 X ∩ Y ∈ P
4.2 X ⊃ Y = {s ∈ S | ∀s′ v s : s′ ∈ X ⇒ s′ ∈ Y } ∈∈ P
4.3 �Y = {s ∈ S | R(s) ⊆ Y } ∈ P

A model is a tuple 〈F , π〉 where π : At→ P.
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x v y means that the state x is a refinement or further
specification or extension of the state y
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Suppose thatM = 〈S ,R ,v,P, π〉 is a partial-state model with
x ∈ S:

I M, x |= p iff x ∈ π(p)

I M, x |= ¬ϕ iff ∀x′ v x,M, x′ 6|= ϕ

I M, x |= ϕ ∧ ψ iffM, x |= ϕ andM, x |= ψ

I M, x |= ϕ→ ψ iff ∀x′ v x, ifM, x′ |= ϕ thenM, x′ |= ψ

I M, x |= �ϕ iff ∀y ∈ R(x),M, y |= ϕ

Fact: Given ϕ ∨ ψ := ¬(¬ϕ ∧ ¬ψ),

M, x |= ϕ ∨ ψ iff ∀x′ v x ∃x′′ v x′,M, x′′ |= ϕ orM, x′′ |= ψ
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Suppose that F = 〈S ,R ,v,P〉 is a partial-state frame and
M = 〈F , π〉 a partial-state model:

1. [[p]]M = π(p)

2. [[¬ϕ]]M = [[ϕ]]M ⊃ [[∅]]M

3. [[ϕ ∧ ψ]]M = [[ϕ]]M ∩ [[ψ]]M

4. [[ϕ→ ψ]]M = [[ϕ]]M ⊃ [[ψ]]M

5. [[�ϕ]]M = �[[ϕ]]M

I For any formula ϕ ∈ L, [[ϕ]]M ∈ P
I The set of formulas valid over F is closed under uniform

substitution
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World Frames

A relational frame 〈W ,R〉 can be regarded as a partial-frame
〈W ,R ,v,P〉 where

1. v is the identity relation
2. P = ℘(W)

A general relational frame 〈W ,R ,A〉 can be regarded as a
partial-frame 〈W ,R ,v,A〉 where

1. v is the identity relation

Fact. The definition of truth for Boolean connectives reduces to
the standard definition on world frames.
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Powerset Possibilization

Given a world frame F = 〈W ,R ,A〉 and a world model
M = 〈F,V〉, the powerset possibilization are F℘ = 〈S ,v,R ,P〉
andM℘ = 〈F℘, π〉, defined as follows:

1. S = ℘(W) − ∅

2. X v Y iff X ⊆ Y
3. XRY iff Y ⊆ R[X ]

4. P = {↓X | X ∈ A }
5. π(p) = {X ∈ S | X ⊆ V(p)}
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p,q

w

q

v

V(p) = {w} V(q) = {v}
[[�q]]M = {w, v} [[¬q]]M = ∅ [[q → p]]M = {w}

{w, v}

{w} {v}

v v

R

R

π(p) = {{w}} π(q) = {{w}, {v}, {w, v}}
[[�q]]M℘ = {{w}, {v}, {w, v}}} [[¬q]]M℘ = {∅} [[q → p]]M℘ = {{w}}
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Fact.

1. For any X ∈M℘ and ϕ ∈ L,M℘,X |= ϕ iff ∀x ∈M,
M, x |= ϕ

2. For any set of formulas Σ, Σ is satisfiable over F℘ iff Σ is
satisfiable over F

Corollary. K is sound with respect to the class of all powerset
possibilizations of world frames and complete with respect to
the class of powerset possibilizations of full world frames.

Moreover, any normal modal logic that is sound and complete
with respect to a class F of world frames, according to standard
Kripke semantics, is also sound and complete with respect to
the class of powerset possibilizations of frames from F,
according to partial-state semantics.
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Possibility frames
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Note that ϕ↔ ¬¬ϕ is not valid on partial-state frames.
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Refinability: IfM, x 6|= ϕ then there is a x′ v x such that
M, x′ |= ¬ϕ

If ϕ is indeterminate at x, i.e., ifM, x 6|= ϕ andM, x 6|= ¬ϕ, then
there is a refinement of x that decides ϕ negatively and there is
a refinement of x that decides ϕ affirmatively.

Indeterminacy of ϕ is equivalent to having refinements that
decide ϕ each way.

Persistence: ifM, x |= ϕ and x′ v x, thenM, x′ |= ϕ.
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x |= ϕ

y |= ϕ

z |= ϕ

∀

persistence

x |= ¬¬ϕ

y 6|= ¬ϕ

z |= ϕ

∀

∃

x 6|= ϕ

y |= ¬ϕ

z 6|= ϕ

∃

∀

refinability

Persistence implies that ϕ→ ¬¬ϕ is valid

Refinability implies that ¬¬ϕ→ ϕ is valid
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In classical partial-state frames, every admissible proposition
X ∈ P will satisfy:

I Persistence: if x ∈ X and x′ v x, then x′ ∈ X
I Refinability: if x < X then ∃x′ v x ∀x′′ v x′ : x′′ < X

In intuitionistic models, the admissible propositions are all the
downsets, but in classical models, the admissible propositions
are all downsets that also satisfy admissibility.

X satisfies both persistence and refinability is equivalent to X
satisfying:

x ∈ X iff ∀x′ v x′ ∃x′′ v x′ : x′′ ∈ X

Eric Pacuit 14



In classical partial-state frames, every admissible proposition
X ∈ P will satisfy:

I Persistence: if x ∈ X and x′ v x, then x′ ∈ X
I Refinability: if x < X then ∃x′ v x ∀x′′ v x′ : x′′ < X

In intuitionistic models, the admissible propositions are all the
downsets, but in classical models, the admissible propositions
are all downsets that also satisfy admissibility.

X satisfies both persistence and refinability is equivalent to X
satisfying:

x ∈ X iff ∀x′ v x′ ∃x′′ v x′ : x′′ ∈ X

Eric Pacuit 14



In classical partial-state frames, every admissible proposition
X ∈ P will satisfy:

I Persistence: if x ∈ X and x′ v x, then x′ ∈ X
I Refinability: if x < X then ∃x′ v x ∀x′′ v x′ : x′′ < X

In intuitionistic models, the admissible propositions are all the
downsets, but in classical models, the admissible propositions
are all downsets that also satisfy admissibility.

X satisfies both persistence and refinability is equivalent to X
satisfying:

x ∈ X iff ∀x′ v x′ ∃x′′ v x′ : x′′ ∈ X

Eric Pacuit 14



Let O(S ,v) be the set of all downsets in 〈S ,v〉.

〈S ,O(S ,v)〉 is a topology (the downset, or Alexandrov,
topology).

Interior: int(X) is the largest downset included in X
Closure: cl(X) is the smallest upset that includes X

[[¬ϕ]]M = int(S − [[ϕ]]M)
[[ϕ→ ψ]]M = int((S − [[ϕ]]M) ∪ [[ψ]]M)
[[ϕ ∨ ψ]]M = int(cl([[ϕ]]M ∪ [[ψ]]M))

A set X is regular open of X = int(cl(X)).
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Fact. For any topological space 〈S ,O〉, the structure
〈RO(S),∧,−,>〉 where

RO(S) is the set of all regular open sets in the topology,
X ∧ Y = X ∩ Y , −X = int(S − X), and > = S

is a complete Boolean algebra with

for all X ⊆ R(S),
∧
X = int(

⋂
X) and

∨
X = int(cl(

⋃
X)).
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Lemma. For any poset 〈S ,v〉 and X ⊆ S:

1. int(cl(X)) = {x ∈ S | ∀x′ v x ∃x′′ v x′ : x′′ ∈ X }
2. int(cl(⇓X)) is the smallest regular open set that includes

X , where ⇓X = {y ∈ S | ∃x ∈ X : y v x}
3. X satisfies persistence and refinability iff X is regular open

in O(S ,v)
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Proposition For any partial-state frame F = 〈S ,v,R ,P〉 the
following are equivalent:

1. the set of ϕ ∈ L valid over F is a classical normal modal
logic;

2. for every ϕ ∈ L, ¬¬ϕ is equivalent to ϕ over F ; and
3. P ⊆ RO(F )

Definition. A possibility frame is a partial-state frame
F = 〈S ,v,R ,P〉 in which P ⊆ RO(F ). A full possibility frame is
a possibility frame in which P = RO(F )

Eric Pacuit 18



An important property of a full possibility frame F is that
RO(F ) is closed under �.

This is not trivial, for there are possibility frames F that lack the
property.

By contrast, it is easy to check that for any F , RO(F ) is closed
under ∩ and ⊃.

The fact that not every possibility frame is such that RO(F ) is
closed under � means that not every possibility frame can be
turned into a full possibility frame simply by replacing its set of
admissible propositions P by RO(F ).
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Intuitionistic Modal Frames

A full intuitionistic modal frame is a partial-state frame
F = 〈S ,R ,v,P〉 satisfying:

1. up-R: if x′ v x and x′Ry′, then xRy′

2. R-down: if y′ v y and xRy, then xRy′

3. P is the set of all downsets in 〈S ,v〉

Persistence: IfM, x |= ϕ and x′ v x, thenM, x′ |= ϕ.
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up-R

If x′ v x and x′Ry′, then xRy′.

x

x′ y′

R

R
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x

x′ y′
R

R
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up-R

If x′ v x and x′Ry′, then xRy′.

x

x′ y′
R

R
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x ∈ �X

x′< �X

y′ < X

Claim. If x′ v x and x ∈ �X , then x′ ∈ �X

Up-R: If x′ v x and x′Ry′, then xRy′.
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For any poset 〈S ,v〉 and binary relation R on S the following
are equivalent:

1. RO(S ,v) is closed under �
2. R and v and satisfy:

2.1 R-rule: if x′ v x and x′ R y′ () z, then ∃y : x R y () z
2.2 R⇒win: if xRy, then
∀y′ v y ∃x′ v x ∀x′′ v x′ ∃y′′ () y′ : x′′Ry′′

I If F satisfies R-rule, then F satisfies up-R
I If F satisfies down-R, then R⇒win is equivalent with:

R-refinability: if xRy then ∃x′ v x ∀x′′ v x′ ∃y′ v y : x′′Ry′
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x ∈ X

y ∈ X

z |= ϕ

∀

persistence

x < X

y

z < X

∃

∀

refinability
x ∈ �X

x′< �X

y′ < X

z

z′ < X

y < X

v < X

∃

∀

∀

Claim. If x′ v x and x ∈ �X , then x′ ∈ �X
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Eric Pacuit 24



x ∈ X

y ∈ X

z |= ϕ

∀

persistence

x < X

y

z < X

∃

∀

refinability
x ∈ �X

x′< �X

y′ < X

z

z′ < X

y < X

v < X

∃

∀

∀

Claim. If x′ v x and x ∈ �X , then x′ ∈ �X

R-rule: if x′ v x and x′ R y′ () z, then ∃y : x R y () z

Eric Pacuit 24



x ∈ X

y ∈ X

z |= ϕ

∀

persistence

x < X

y

z < X

∃

∀

refinability
x ∈ �X

x′< �X

y′ < X

z

z′ < X

y < X

v < X

∃

∀

∀

Claim. If x′ v x and x ∈ �X , then x′ ∈ �X

R-rule: if x′ v x and x′ R y′ () z, then ∃y : x R y () z

Eric Pacuit 24



x ∈ X

y ∈ X

z |= ϕ

∀

persistence

x < X

y

z < X

∃

∀

refinability
x ∈ �X

x′< �X

y′ < X

z

z′ < X

y < X

v < X

∃

∀

∀

Claim. If x′ v x and x ∈ �X , then x′ ∈ �X

R-rule: if x′ v x and x′ R y′ () z, then ∃y : x R y () z

Eric Pacuit 24



x ∈ X

y ∈ X

z |= ϕ

∀

persistence

x < X

y

z < X

∃

∀

refinability
x ∈ �X

x′< �X

y′ < X

z

z′ < X

y < X

v < X

∃

∀

∀

Claim. If x′ v x and x ∈ �X , then x′ ∈ �X

R-rule: if x′ v x and x′ R y′ () z, then ∃y : x R y () z

Eric Pacuit 24



x ∈ X

y ∈ X

z |= ϕ

∀

persistence

x < X

y

z < X

∃

∀

refinability
x ∈ �X

x′< �X

y′ < X

z

z′ < X

y < X

v < X

∃

∀

∀

Claim. If x′ v x and x ∈ �X , then x′ ∈ �X

R-rule: if x′ v x and x′ R y′ () z, then ∃y : x R y () z

Eric Pacuit 24



x ∈ X

y ∈ X

z |= ϕ

∀

persistence

x < X

y

z < X

∃

∀

refinability
x ∈ �X

x′< �X

y′ < X

z

z′ < X

y < X

v < X

∃

∀

∀

Claim. If x′ v x and x ∈ �X , then x′ ∈ �X

R-rule: if x′ v x and x′ R y′ () z, then ∃y : x R y () z

Eric Pacuit 24



x ∈ X

y ∈ X

z |= ϕ

∀

persistence

x < X

y

z < X

∃

∀

refinability
x ∈ �X

x′< �X

y′ < X

z

z′ < X

< Xy

v < X

∃

∀

∀

Claim. If x′ v x and x ∈ �X , then x′ ∈ �X

R-rule: if x′ v x and x′ R y′ () z, then ∃y : x R y () z

Eric Pacuit 24



x < �X

y < X

y′

z < X

∃

∀

x′

x′′ < �X

y′′ < X

∃

∀

R

v < X

Claim. if x < �X then ∃x′ v x ∀x′′ v x′ : x′′ < �X

R⇒win: if xRy, then
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The are full possibility frames F that validate a modal formula
that is not valid on any Kripke frame. Thus, the logic of F will
be a normal modal logic that is Kripke-frame inconsistent—it is
not sound with respect to any Kripke frame.
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Suppose that ϕ and ψ for formulas such that the propositional
variable p does not occur in ψ. The consider the following
formula:

split ^i(p ∧ ψ)→ (^i(p ∧ ϕ) ∧^i(p ∧ ¬ϕ))

Any Kripke frame F that validates split must also validate ¬^iψ.

Worlds cannot split, but possibilities can: There is a full
possibility frames that validates and instance of split and ^iψ.
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There are three approaches to valuation functions in the
literature on possibility semantics.

The approach followed here: a valuation is a total function
π : At→ ℘(S) such that π(p) satisfies persistence and
refinability.

x ∈ π(p) means that x determines that p is true and x < π(p)
means that x does not determine that p is true, i.e., that either
x determines that p is false or x does not determine the truth or
falsity of p.
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Partial Valuations

A valuation is a partial function V : At × S → {0,1} satisfying
stability and resolution:

1. stability V(p, x) is defined and x′ v x, then V(p, x′) is
defined and V(p, x) = V(p, x′)

2. resolution: if V(p, x) is undefined, then there are y v x and
z v x such that V(p, y) = 1 and V(p, z) = 0.

V(p, x) = 1 means that x determines that p is true; V(p, x) = 0
means that x determines that p is false; V(p, x) being
undefined means that x does not determine the truth or falsity
of p.
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Total Valuations

U : At × S → 0,1 is a total function such that
{x ∈ S | U(p, x) = 1} satisfies persistence and refinability in the
sense of this paper; U(p, x) = 1 means that x determines that
p is true; U(p, x) = 0 means that x does not determine that p is
true.
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M. Harrison-Trainor. Worldization of Possibility Models. manuscript,
2018.
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From possibilities to worlds

“[T]he business of making a possibility more determinate
seems openended. There are possibilities that the child at
home should be a boy, a six-year-old boy, a six-year-old boy
with blue eyes, a six-year old boy with blue eyes who weighs 3
stone, and so forth. So far from terminating in a fully
determinate possibility, we seem to have an indefinitely long
sequence of increasingly determinate possibilities, any one of
which is open to further determination. But then, so far from
conceiving of our rational activities as discriminating between
regions of determinate points, we appear to have no clear
conception of such a point at all. ”

I. Rumfitt. The Boundary Stones of Thought: An Essay in the Philoso-
phy of Logic. Oxford University Press, 2015.
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Theorem (Harrison-Trainor). LetM be a countable possibility
model in a countable language. Then there is a Kripke model
K which is a worldization ofM.

Note: there are counterexamples ifM is not countable or the
language is not countable.
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J. van Benthem, N. Bezhanishvili and W. Holliday. A Bimodal Per-
spective on Possibility Semantics. Journal of Logic and Computation,
27(5), 2017, pp. 1353 - 1389.
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