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Epistemic Logic

Let KaP informally mean “agent a knows that P (is true)”.

Ka(P → Q): “Ann knows that P implies Q”
KaP ∨ ¬KaP: “either Ann does or does not know P”
KaP ∨ Ka¬P: “Ann knows whether P is true”

¬Ka¬P: “P is an epistemic possibility for Ann”
KaKaP: “Ann knows that she knows that P”
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Example
Suppose there are three
cards: 1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed
face down on the table and
the third card is put back in
the deck.

(1,2)

w1

(1,3)

w2

(2,3)

w3

(2,1)

w4

(3,1)

w5

(3,2)

w6
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Example
Suppose there are three
cards: 1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed
face down on the table and
the third card is put back in
the deck.

Ann receives card 3 and card
1 is put on the table
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Example
Suppose there are three
cards: 1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed
face down on the table and
the third card is put back in
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Suppose Hi is intended to
mean “Ann has card i”

Ti is intended to mean “card i
is on the table”

Eg., V(H1) = {w1,w2}
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Example
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Example
Suppose there are three
cards: 1, 2 and 3.

Ann is dealt one of the cards,
one of the cards is placed
face down on the table and
the third card is put back in
the deck.

M,w1 |= Ka(T2 ∨ T3)
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w5

H3,T2

w6

Eric Pacuit 4



Multiagent Epistemic Logic

Many of the examples we are interested in involve more than
one agent!

KaP means “Ann knows P”

KbP means “Bob knows P”

I KaKbϕ: “Ann knows that Bob knows ϕ”

I Ka(Kbϕ ∨ Kb¬ϕ): “Ann knows that Bob knows whether ϕ

I ¬KbKaKb(ϕ): “Bob does not know that Ann knows that
Bob knows that ϕ”
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College Park and Amsterdam

Suppose agent c, who lives in College Park, knows that agent
a lives in Amsterdam. Let r stand for ‘it’s raining in Amsterdam’.
Although c doesn’t know whether it’s raining in Amsterdam, c
knows that a knows whether it’s raining there:

¬(Kcr ∨ Kc¬r) ∧ Kc(Kar ∨ Ka¬r).

The following picture depicts a situation in which this is true,
where an arrow represents compatibility with one’s knowledge:

r

w1 w2

c
c,a c,a
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Now suppose that agent c doesn’t know whether agent a has
left Amsterdam for a vacation. (Let v stand for ‘a has left
Amsterdam on vacation’.) Agent c knows that if a is not on
vacation, then a knows whether it’s raining in Amsterdam; but if
a is on vacation, then a won’t bother to follow the weather.

Kc(¬v → (Kar ∨ Ka¬r)) ∧ Kc(v → ¬(Kar ∨ Ka¬r)).

r

w1 w2

v , r

w3

v

w4

c

c c
c

c,a c,a

c,a
c,a

c,a
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Epistemic Logic: The Language

ϕ is a formula of Epistemic Logic (L) if it is of the form

ϕ := p | ¬ϕ | ϕ ∧ ψ | Kaϕ

Eric Pacuit 9



Epistemic Logic: The Language

ϕ is a formula of Epistemic Logic (L) if it is of the form

ϕ := p | ¬ϕ | ϕ ∧ ψ | Kaϕ

I p ∈ At is an atomic fact.
• “It is raining”
• “The talk is at 2PM”
• “The card on the table is a 7 of Hearts”
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Epistemic Logic: The Language

ϕ is a formula of Epistemic Logic (L) if it is of the form

ϕ := p | ¬ϕ | ϕ ∧ ψ | Kaϕ

I p ∈ At is an atomic fact.
I The usual propositional language (L0)
I Kaϕ is intended to mean “Agent a knows that ϕ is true”.
I The usual definitions for→,∨,↔ apply
I Define Laϕ (or K̂a) as ¬Ka¬ϕ
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Epistemic Logic: The Language

ϕ is a formula of Epistemic Logic (L) if it is of the form

ϕ := p | ¬ϕ | ϕ ∧ ψ | Kaϕ

Ka(p → q): “Ann knows that p implies q”
Kap ∨ ¬Kap: “either Ann does or does not know p”
Kap ∨ Ka¬p: “Ann knows whether p is true”

Laϕ: “ϕ is an epistemic possibility”
KaLaϕ: “Ann knows that she thinks ϕ is

possible”

Eric Pacuit 9



Epistemic Logic: Kripke Models

M = 〈W , {Ra}a∈A,V〉
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Epistemic Logic: Kripke Models

M = 〈W , {Ra}a∈A,V〉

I W , ∅ is the set of all relevant situations (states of affairs,
possible worlds)

I Ra ⊆W ×W represents the agent a’s knowledge

I V : At→ ℘(W) is a valuation function assigning
propositional variables to worlds

Eric Pacuit 10



Epistemic Logic: Truth in a Model

Given ϕ ∈ L, a Kripke modelM = 〈W , {Ra}a∈A,V〉 and w ∈W

M,w |= ϕ means “inM, if the actual state is w, then ϕ is true”

Eric Pacuit 11



Epistemic Logic: Truth in a Model

Given ϕ ∈ L, a Kripke modelM = 〈W , {Ra}a∈A,V〉 and w ∈W

M,w |= ϕ is defined as follows:

I M,w |= p iff w ∈ V(p) (with p ∈ At)
I M,w |= ¬ϕ ifM,w 6|= ϕ

I M,w |= ϕ ∧ ψ ifM,w |= ϕ andM,w |= ψ

I M,w |= Kaϕ if for each v ∈W , if wRav, thenM, v |= ϕ

M,w |= Laϕ if there exists a v ∈W such that wRav and
M, v |= ϕ
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Kaϕ: “Agent a is informed that ϕ”, “Agent a knows that ϕ”

M,w |= Kaϕ iff for all v ∈W , if wRav thenM, v |= ϕ

I.e., Ra(w) = {v | wRav} ⊆ [[ϕ]]M = {v | M, v |= ϕ}:

I wRav if “everything a knows in state w is true in v
I wRav if “agent a has the same experiences and memories

in both w and v”
I wRav if “agent a has cannot rule-out v, given her evidence

and observations (at state w)”
I wRav if “agent a is in the same local state in w and v”
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Laϕ iff there is a v ∈W such thatM, v |= ϕ

I.e., Ra(w) = {v | wRav} ∩ [[ϕ]]M = {v | M, v |= ϕ} , ∅

I Laϕ: “Agent a thinks that ϕ might be true.”
I Laϕ: “Agent a considers ϕ possible.”
I Laϕ: “(according to the model), ϕ is consistent with what a

knows (¬Ka¬ϕ)”.
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Taking Stock

Multi-agent language: ϕ := p | ¬ϕ | ϕ ∧ ψ | �iϕ

I �iϕ: “agent i knows that ϕ” (write Kiϕ for �iϕ)
I �iϕ: “agent i believes that ϕ” (write Biϕ for �iϕ)

Kripke Models: M = 〈W , {Ri}i∈A,V〉

Truth: M,w |= �iϕ iff for all v ∈W , if wRiv thenM, v |= ϕ
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Modal Formula Corresponding Property

�(ϕ→ ψ)→ (�ϕ→ �ψ) —
�ϕ→ ϕ Reflexive
�ϕ→ ��ϕ Transitive
¬�ϕ→ �¬�ϕ Euclidean

¬�⊥ Serial
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The Logic S5
The logic S5 contains the following axioms and rules:

Pc Axiomatization of Propositional Calculus
K K(ϕ→ ψ)→ (Kϕ→ Kψ)
T Kϕ→ ϕ
4 Kϕ→ KKϕ
5 ¬Kϕ→ K¬Kϕ

MP
ϕ ϕ→ ψ

ψ

Nec
ϕ

Kψ

Theorem
S5 is sound and strongly complete with respect to the class of
Kripke frames with equivalence relations. adfasd fa sdf asd fas
df asdf as df asd fas df
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The Logic KD45
The logic S5 contains the following axioms and rules:

Pc Axiomatization of Propositional Calculus
K B(ϕ→ ψ)→ (Bϕ→ Bψ)
D ¬B⊥ (Bϕ→ ¬B¬ϕ)
4 Bϕ→ BBϕ
5 ¬Bϕ→ B¬Bϕ

MP
ϕ ϕ→ ψ

ψ

Nec
ϕ

Bψ

Theorem
KD45 is sound and strongly complete with respect to the class
of Kripke frames with pseudo-equivalence relations (reflexive,
transitive and serial).
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Truth Axiom/Consistency

Kϕ→ ϕ

¬B⊥
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Negative Introspection

¬�ϕ→ �¬�ϕ

(� = K ,B)
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Why would an agent not know some fact ϕ? (i.e., why would
¬Kiϕ be true?)

I The agent may or may not believe ϕ, but has not ruled out
all the ¬ϕ-worlds

I The agent may believe ϕ and ruled-out the ¬ϕ-worlds, but
this was based on “bad” evidence, or was not justified, or
the agent was “epistemically lucky” (e.g., Gettier cases),...

I The agent has not yet entertained possibilities relevant to
the truth of ϕ (the agent is unaware of ϕ).
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Positive Introspection

�ϕ→ ��ϕ

(� = K ,B)

Eric Pacuit 21



The KK Principle

More famous is the “KK principle” (or “positive introspection”):

4i Kiϕ→ KiKiϕ.

Hintikka, one of the inventors of epistemic logic, endorsed the
4 axiom—at least for what he considered a strong notion of
knowledge, found in philosophy from Aristotle to Schopenhauer.

J. Hintikka. Knowledge and Belief. Cornell University Press, 1962.

Hintikka rejected arguments for 4 based on claims about
agents introspective powers, or what he called “the myth of the
self-illumination of certain mental activities” (67). Instead, his
claim was that for a strong notion of knowledge, knowing that
one knows “differs only in words” from knowing (§2.1-2.2).
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How Many Modalities?

Fact. In S5 and KD45, there are only three modalities (�, ^,
and the “empty modality”)
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The Surprise Exam Paradox

A teacher announces to her student, a clever logician, that she
will give him a surprise exam in a term of n ≥ 2 days.

He
replies:
I you can’t wait until day n to give the exam, because then I’d

know on the morning of n that the exam must be that day;
I you also can’t wait until day n − 1 to give the exam,

because then I’d know on the morning of n − 1 that it must
be that day, having ruled out day n by the previous
reasoning.

I you also can’t wait until day n − 2 to give the exam, etc.
He concludes that the teacher cannot give him a surprise exam.
But then he is surprised to receive an exam on, say, day n − 1.

Question: what went wrong in the student’s reasoning?
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Wes Holliday. “Simplifying the Surprise Exam.”. UC Berkeley Working
paper in Philosophy, 2016.
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Step 1: Choosing the Formalism (language)

To formalize the paradoxes, we use the epistemic language

ϕ ::= pi | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ

where i ∈N.

For the surprise exam paradox, we read
Kiϕ as “the student knows on the morning of day i that ϕ”;
pi as “there is an exam on the afternoon of day i”.

For the designated student paradox, we read
Kiϕ as “the i-th student in line knows that ϕ”;
pi as “there is a gold star on the back of the i-th student”.
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Step 1: Choosing the Formalism (reasoning system)

To formalize the reasoning in the paradoxes, we will use the
minimal “normal” modal proof system K, extending
propositional logic with the following rule for each m ∈N:

RKm
(ϕ1 ∧ · · · ∧ ϕm)→ ψ

(Kiϕ1 ∧ · · · ∧ Kiϕm)→ Kiψ
,

which states that if the premise is a theorem, so is the
conclusion.

Intuitively, RKi says that the student on day i (or the i-th
student) knows all the logical consequences of what he knows.
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Step 2: Formalizing the Assumptions (n = 2)

Starting with the n = 2 case, consider the following
assumptions:

(A) K1((p1 ∧ ¬K1p1) ∨ (p2 ∧ ¬K2p2));

(B) K1(p2 → K2¬p1);

(C) K1K2(p1 ∨ p2).

For the surprise exam, (A) states that the student knows on the
morning of day 1 that the teacher’s announcement is true. (B)
states that the student knows on the morning of day 1 that if the
exam is on the afternoon of day 2, then the student will know on
the morning of day 2 that it was not on day 1 (on the basis of
memory). Finally, (C) states that the student knows on the
morning of day 1 that she will know on the morning of day 2 the
part of the teacher’s announcement about an exam.
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For the designated student, (A) states that student 1 knows
that the teacher’s announcement is true.

(B) states that student
1 knows that if student 2 has the gold star, then student 2
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of seeing the silver star on student 1’s back). (C) states that
student 1 knows that student 2 knows that one of them has the
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Step 3: Showing Inconsistency with a Proof (n = 2)

Let us first show: {(A), (B), (C)} `K K1(p1 ∧ ¬K1p1)
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Let us first show: {(A), (B), (C)} `K K1(p1 ∧ ¬K1p1)

(A) K1((p1 ∧ ¬K1p1) ∨ (p2 ∧ ¬K2p2)) premise
(B) K1(p2 → K2¬p1) premise
(C) K1K2(p1 ∨ p2) premise

(1) (K2(p1 ∨ p2) ∧ K2¬p1)→ K2p2 using PL and RK2
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Step 3: Showing Inconsistency with a Proof (n = 2)

Given {(A), (B), (C)} `K K1(p1 ∧ ¬K1p1), although we haven’t
yet derived a contradiction, we have derived something
paradoxical.

If we just add the “factivity” axiom T1, K1ϕ→ ϕ, or the “weak
factivity” axiom J1, K1¬K1ϕ→ ¬K1ϕ (e.g., reading K as belief
instead of knowledge), then we can derive a contradiction:

{(A), (B), (C)} `KT1 ⊥ and {(A), (B), (C)} `KJ1 ⊥.

Thus, we must reject either (A), (B), (C), or the rule RKi . . .
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Step 2: Formalizing the Assumptions (n = 2)

Starting with the n = 2 case, consider the following
assumptions:

(A) K1((p1 ∧ ¬K1p1) ∨ (p2 ∧ ¬K2p2));

(B) K1(p2 → K2¬p1);

(C) K1K2(p1 ∨ p2).

For the designated student, (A) states that student 1 knows
that the teacher’s announcement is true. (B) states that student
1 knows that if student 2 has the gold star, then student 2
knows that student 1 does not have the gold star (on the basis
of seeing the silver star on student 1’s back). (C) states that
student 1 knows that student 2 knows that one of them has the
gold star.
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Comparison with n = 3 Case

The generalizations of (A), (B), and (C) to the n = 3 case are:

(A3) K1((p1 ∧ ¬K1p1) ∨ (p2 ∧ ¬K2p2) ∨ (p3 ∧ ¬K3p3));

(B3) K1(((p2 ∨ p3)→ K2¬p1) ∧ (p3 → K3¬(p1 ∨ p2));

(C3) K1(K2(p1 ∨ p2 ∨ p3) ∧ K3(p1 ∨ p2 ∨ p3)).

Interestingly, as we will show later, these assumptions are con-
sistent even if we make strong assumptions about knowledge.
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Comparison with n = 3 Case
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(C3) K1(K2(p1 ∨ p2 ∨ p3) ∧ K3(p1 ∨ p2 ∨ p3)).

If you think about the clever student’s reasoning, he assumes
that if he knows something, then he will continue to know it (or,
for the designated student, then the students behind him in line
know it):

4<1 K1ϕ→ K1Kiϕ i > 1
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we can get into trouble starting from (A3) and (B3).
Indeed, the following result holds for any n > 2. See

Wes Holliday. “Simplifying the Surprise Exam.” (email for manuscript)
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Let us now show: {(A3), (B3)} `K4<1
K1(p ∧ ¬K1p1)

(A3) K1(S1 ∨ S2 ∨ S3);

(B3) K1(((p2 ∨ p3)→ K2¬p1) ∧ (p3 → K3¬(p1 ∨ p2));

(D3) K1(K2(S1 ∨ S2 ∨ S3) ∧ K3(p1 ∨ p2 ∨ p3)) from (A3), 4<1 , RK3, PL

(3,1) (K3(p1 ∨ p2 ∨ p3) ∧ K3¬(p1 ∨ p2))→ K3p3 by PL and RK3

(3,2) K1((K3(p1 ∨ p2 ∨ p3) ∧ K3¬(p1 ∨ p2))→ K3p3) from (3,1) by Nec1

(3,3) K1(K3¬(p1 ∨ p2)→ K3p3) from (D3), (3,2) using RK1 and PL

(3,4) K1¬S3 from (B3), (3,3) using RK1 and PL

(2,0) K1K2¬S3 from (3,4) by 4<1
(2,1) (K2(S1 ∨ S2 ∨ S3) ∧ K2¬p1 ∧ K2¬S3)→ K2p2 by PL and RK2

(2,2) K1((K2(S1 ∨ S2 ∨ S3) ∧ K2¬p1 ∧ K2¬S3)→ K2p2) from (2,1) by
Nec1

(2,3) K1(K2¬p1 → K2p2) from (D3), (2,0), (2,2) using RK1 and PL

(2,4) K1¬S2 from (B3), (2,3) using RK1 and PL

(2,5) K1S1 from (A3), (3,4), (2,4) using RK1 and PL
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(2,0) K1K2¬S3 from (3,4) by 4<1
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Eric Pacuit 34



Let us now show: {(A3), (B3)} `K4<1
K1(p ∧ ¬K1p1)

(A3) K1(S1 ∨ S2 ∨ S3);

(B3) K1(((p2 ∨ p3)→ K2¬p1) ∧ (p3 → K3¬(p1 ∨ p2));

(D3) K1(K2(S1 ∨ S2 ∨ S3) ∧ K3(p1 ∨ p2 ∨ p3)) from (A3), 4<1 , RK3, PL

(3,1) (K3(p1 ∨ p2 ∨ p3) ∧ K3¬(p1 ∨ p2))→ K3p3 by PL and RK3

(3,2) K1((K3(p1 ∨ p2 ∨ p3) ∧ K3¬(p1 ∨ p2))→ K3p3) from (3,1) by Nec1

(3,3) K1(K3¬(p1 ∨ p2)→ K3p3) from (D3), (3,2) using RK1 and PL

(3,4) K1¬S3 from (B3), (3,3) using RK1 and PL

(2,0) K1K2¬S3 from (3,4) by 4<1
(2,1) (K2(S1 ∨ S2 ∨ S3) ∧ K2¬p1 ∧ K2¬S3)→ K2p2 by PL and RK2

(2,2) K1((K2(S1 ∨ S2 ∨ S3) ∧ K2¬p1 ∧ K2¬S3)→ K2p2) from (2,1) by
Nec1

(2,3) K1(K2¬p1 → K2p2) from (D3), (2,0), (2,2) using RK1 and PL

(2,4) K1¬S2 from (B3), (2,3) using RK1 and PL

(2,5) K1S1 from (A3), (3,4), (2,4) using RK1 and PL

Eric Pacuit 34



Let us now show: {(A3), (B3)} `K4<1
K1(p ∧ ¬K1p1)

(A3) K1(S1 ∨ S2 ∨ S3);

(B3) K1(((p2 ∨ p3)→ K2¬p1) ∧ (p3 → K3¬(p1 ∨ p2));

(D3) K1(K2(S1 ∨ S2 ∨ S3) ∧ K3(p1 ∨ p2 ∨ p3)) from (A3), 4<1 , RK3, PL

(3,1) (K3(p1 ∨ p2 ∨ p3) ∧ K3¬(p1 ∨ p2))→ K3p3 by PL and RK3

(3,2) K1((K3(p1 ∨ p2 ∨ p3) ∧ K3¬(p1 ∨ p2))→ K3p3) from (3,1) by Nec1

(3,3) K1(K3¬(p1 ∨ p2)→ K3p3) from (D3), (3,2) using RK1 and PL

(3,4) K1¬S3 from (B3), (3,3) using RK1 and PL

(2,0) K1K2¬S3 from (3,4) by 4<1
(2,1) (K2(S1 ∨ S2 ∨ S3) ∧ K2¬p1 ∧ K2¬S3)→ K2p2 by PL and RK2

(2,2) K1((K2(S1 ∨ S2 ∨ S3) ∧ K2¬p1 ∧ K2¬S3)→ K2p2) from (2,1) by
Nec1

(2,3) K1(K2¬p1 → K2p2) from (D3), (2,0), (2,2) using RK1 and PL

(2,4) K1¬S2 from (B3), (2,3) using RK1 and PL

(2,5) K1S1 from (A3), (3,4), (2,4) using RK1 and PL

Eric Pacuit 34



Let us now show: {(A3), (B3)} `K4<1
K1(p ∧ ¬K1p1)

(A3) K1(S1 ∨ S2 ∨ S3);

(B3) K1(((p2 ∨ p3)→ K2¬p1) ∧ (p3 → K3¬(p1 ∨ p2));

(D3) K1(K2(S1 ∨ S2 ∨ S3) ∧ K3(p1 ∨ p2 ∨ p3)) from (A3), 4<1 , RK3, PL

(3,1) (K3(p1 ∨ p2 ∨ p3) ∧ K3¬(p1 ∨ p2))→ K3p3 by PL and RK3

(3,2) K1((K3(p1 ∨ p2 ∨ p3) ∧ K3¬(p1 ∨ p2))→ K3p3) from (3,1) by Nec1

(3,3) K1(K3¬(p1 ∨ p2)→ K3p3) from (D3), (3,2) using RK1 and PL

(3,4) K1¬S3 from (B3), (3,3) using RK1 and PL

(2,0) K1K2¬S3 from (3,4) by 4<1
(2,1) (K2(S1 ∨ S2 ∨ S3) ∧ K2¬p1 ∧ K2¬S3)→ K2p2 by PL and RK2

(2,2) K1((K2(S1 ∨ S2 ∨ S3) ∧ K2¬p1 ∧ K2¬S3)→ K2p2) from (2,1) by
Nec1

(2,3) K1(K2¬p1 → K2p2) from (D3), (2,0), (2,2) using RK1 and PL

(2,4) K1¬S2 from (B3), (2,3) using RK1 and PL

(2,5) K1S1 from (A3), (3,4), (2,4) using RK1 and PL

Eric Pacuit 34



Let us now show: {(A3), (B3)} `K4<1
K1(p ∧ ¬K1p1)

(A3) K1(S1 ∨ S2 ∨ S3);

(B3) K1(((p2 ∨ p3)→ K2¬p1) ∧ (p3 → K3¬(p1 ∨ p2));

(D3) K1(K2(S1 ∨ S2 ∨ S3) ∧ K3(p1 ∨ p2 ∨ p3)) from (A3), 4<1 , RK3, PL

(3,1) (K3(p1 ∨ p2 ∨ p3) ∧ K3¬(p1 ∨ p2))→ K3p3 by PL and RK3

(3,2) K1((K3(p1 ∨ p2 ∨ p3) ∧ K3¬(p1 ∨ p2))→ K3p3) from (3,1) by Nec1

(3,3) K1(K3¬(p1 ∨ p2)→ K3p3) from (D3), (3,2) using RK1 and PL

(3,4) K1¬S3 from (B3), (3,3) using RK1 and PL

(2,0) K1K2¬S3 from (3,4) by 4<1
(2,1) (K2(S1 ∨ S2 ∨ S3) ∧ K2¬p1 ∧ K2¬S3)→ K2p2 by PL and RK2

(2,2) K1((K2(S1 ∨ S2 ∨ S3) ∧ K2¬p1 ∧ K2¬S3)→ K2p2) from (2,1) by
Nec1

(2,3) K1(K2¬p1 → K2p2) from (D3), (2,0), (2,2) using RK1 and PL

(2,4) K1¬S2 from (B3), (2,3) using RK1 and PL

(2,5) K1S1 from (A3), (3,4), (2,4) using RK1 and PL

Eric Pacuit 34



Comparison with n = 3 Case

(A3) K1((p1 ∧ ¬K1p1) ∨ (p2 ∧ ¬K2p2) ∨ (p3 ∧ ¬K3p3));

(B3) K1(((p2 ∨ p3)→ K2¬p1) ∧ (p3 → K3¬(p1 ∨ p2)).

As before, given {(A3), (B3)} `K4<1
K1(p ∧ ¬K1p1), we also have:

{(A3), (B3)} `KT14<1
⊥ and {(A3), (B3)} `KJ14<1

⊥.

Thus, we must reject (A3), (B3), the rule RK or the axiom

4<1 K1ϕ→ K1Kiϕ i > 1.
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Summary

I {(A2), (B2), (C2)} `K K1(p1 ∧ ¬K1);
I {(A2), (B2), (C2)} `KJ1 ⊥ and {(A2), (B2), (C2)} `KT1 ⊥;

I {(A3), (B3), (C3)} 0S5 ⊥.

I {(A3), (B3)} `K4<1
K1(p1 ∧ ¬K1);

I {(A3), (B3)} `KJ14<1
⊥ and {(A3), (B3)} `KT14<1

⊥;

With these facts, one can make a strong case that the culprit
behind the paradoxes is the (mistaken) 4<1 axiom, K1ϕ→ K1Kiϕ
(i > 1)....

Wes Holliday. “Simplifying the Surprise Exam.”. UC Berkeley Working
paper in Philosophy, 2016.
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The “Problem” of Logical Omniscience

The rule
RKi

(ϕ1 ∧ · · · ∧ ϕm)→ ψ

(Kiϕ1 ∧ · · · ∧ Kiϕm)→ Kiψ

reflects so-called (synchronic) logical omniscience: the agent
knows (at time t) all the consequences of what she knows (at
t).

Given this, there are two ways to view Ki : as representing either
the idealized (implicit, “virtual”) knowledge of ordinary agents,
or the ordinary knowledge of idealized agents. For discussion,
see

R. Stalnaker.
1991. “The Problem of Logical Omniscience, I,” Synthese.

2006. “On Logics of Knowledge and Belief,” Philosophical Studies.
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The “Problem” of Logical Omniscience

The rule
RKi

(ϕ1 ∧ · · · ∧ ϕm)→ ψ

(Kiϕ1 ∧ · · · ∧ Kiϕm)→ Kiψ

reflects so-called (synchronic) logical omniscience: the agent
knows (at time t) all the consequences of what she knows (at
t).

There is now a large literature on alternative frameworks for
representing the knowledge of agents with bounded rationality,
who do not always “put two and two together” and therefore
lack the logical omniscience reflected by RKi . See, for example:

J. Y. Halpern and R. Pucella. 2011. Dealing with Logical Omniscience:
Expressiveness and Pragmatics. Artificial Intelligence.
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Logical Omniscience

I From ϕ↔ ψ infer Kiϕ↔ Kiψ

I From ϕ→ ψ infer Kiϕ→ Kiψ

I (Ki(ϕ→ ψ) ∧ Kiϕ)→ Kiψ

I From ϕ infer Kiϕ

I Ki>

I (Kiϕ ∧ Kiψ)→ Ki(ϕ ∧ ψ)
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Dealing with Logical Omniscience

I Syntactic approaches: an agents knowledge is
represented by a set of formulas (intuitively, the set of
formulas she knows);

I Awareness: an agent knows ϕ if she is aware of ϕ and ϕ is
true in all the worlds she considers possible;

I Algorithmic knowledge: an agent knows ϕ if her knowledge
algorithm returns “Yes” on a query of ϕ; and

I Impossible worlds: an agent may consider possible worlds
that are logically inconsistent (for example, where p and
¬p may both be true).

Non-Normal Modal Logics

Eric Pacuit 40



Dealing with Logical Omniscience

I Syntactic approaches: an agents knowledge is
represented by a set of formulas (intuitively, the set of
formulas she knows);

I Awareness: an agent knows ϕ if she is aware of ϕ and ϕ is
true in all the worlds she considers possible;

I Algorithmic knowledge: an agent knows ϕ if her knowledge
algorithm returns “Yes” on a query of ϕ; and

I Impossible worlds: an agent may consider possible worlds
that are logically inconsistent (for example, where p and
¬p may both be true).

Non-Normal Modal Logics

Eric Pacuit 40



Dealing with Logical Omniscience

I Syntactic approaches: an agents knowledge is
represented by a set of formulas (intuitively, the set of
formulas she knows);

I Awareness: an agent knows ϕ if she is aware of ϕ and ϕ is
true in all the worlds she considers possible;

I Algorithmic knowledge: an agent knows ϕ if her knowledge
algorithm returns “Yes” on a query of ϕ; and

I Impossible worlds: an agent may consider possible worlds
that are logically inconsistent (for example, where p and
¬p may both be true).

Non-Normal Modal Logics

Eric Pacuit 40



Dealing with Logical Omniscience

I Syntactic approaches: an agents knowledge is
represented by a set of formulas (intuitively, the set of
formulas she knows);

I Awareness: an agent knows ϕ if she is aware of ϕ and ϕ is
true in all the worlds she considers possible;

I Algorithmic knowledge: an agent knows ϕ if her knowledge
algorithm returns “Yes” on a query of ϕ; and

I Impossible worlds: an agent may consider possible worlds
that are logically inconsistent (for example, where p and
¬p may both be true).

Non-Normal Modal Logics

Eric Pacuit 40



Dealing with Logical Omniscience

I Syntactic approaches: an agents knowledge is
represented by a set of formulas (intuitively, the set of
formulas she knows);

I Awareness: an agent knows ϕ if she is aware of ϕ and ϕ is
true in all the worlds she considers possible;

I Algorithmic knowledge: an agent knows ϕ if her knowledge
algorithm returns “Yes” on a query of ϕ; and

I Impossible worlds: an agent may consider possible worlds
that are logically inconsistent (for example, where p and
¬p may both be true).

Non-Normal Modal Logics

Eric Pacuit 40



Dealing with Logical Omniscience

I Syntactic approaches: M,w |= Kiϕ iff ϕ ∈ Ci(w)

I Awareness structures: M,w |= Kiϕ iff for all v ∈W , if wRiv
thenM, v |= ϕ and ϕ ∈ Ai(w)

I Algorithmic knowledge: M,w |= Kiϕ iff Ai(w, ϕ) = Yes

I Impossible worlds: M,w |= Kiϕ iff if w ∈ N, then for all
v ∈W , if wRiv and v ∈ N thenM, v |= ϕ

M,w |= Kiϕ iff if w < N, then ϕ ∈ Ci(w)
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Justification Logic (1)

t :ϕ: “t is a justification/proof for ϕ”

S. Artemov and M. Fitting. Justification logic. The Stanford Encyclo-
pedia of Philosophy, 2012.

S. Artemov. Explicit provability and constructive semantics. The Bul-
letin of Symbolic Logic 7 (2001) 1 36.

M. Fitting. The logic of proofs, semantically. Annals of Pure and Ap-
plied Logic 132 (2005) 1 25.
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Justification Logic (2)

t := c | x | t + s | !t |t · s

ϕ := p | ϕ ∧ ψ | ¬ϕ | t :ϕ

Justification Logic:

I t :ϕ→ ϕ

I t : (ϕ→ ψ)→ (s :ϕ→ t · s :ψ)

I t :ϕ→ (t + s) :ϕ

I t :ϕ→ (s + t) :ϕ

I t :ϕ→!t : t :ϕ

Internalization: if `JL ϕ then there is a proof polynomial t such
that `JL t :ϕ

Realization Theorem: if `S4 ϕ then there is a proof polynomial
t such that `JL t :ϕ
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Justification Logic (3)

Fitting Semantics: M = 〈W ,R ,E,V〉
I W , ∅

I R ⊆W ×W
I E : W × ProofTerms→ ℘(LJL )

I V : At→ ℘(W)

M,w |= t :ϕ iff for all v, if wRv thenM, v |= ϕ and ϕ ∈ E(w, t)
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Justification Logic (3)

Monotonicity For all w, v ∈W , if wRv then for all proof
polynomials t , E(w, t) ⊆ E(v , t).

Application For all proof polynomials s, t and for each w ∈W ,
if ϕ→ ψ ∈ E(w, t) and ϕ ∈ E(w, s), then
ψ ∈ E(w, t · s)

Proof Checker For all proof polynomials t and for each w ∈W ,
if ϕ ∈ E(w, t), then t :ϕ ∈ E(w, !t).

Sum For all proof polynomials s, t and for each w ∈W ,
E(w, s) ∪ E(w, t) ⊆ E(w, s + t).
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Approaches

I Lack of awareness
I Lack of computational power
I Imperfect understanding of the model
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Summary

(Multi-agent) S5 is a logic of “knowledge”

(Multi-agent) KD45 is a logic of “belief”

Two issues:

I Modeling awareness/unawareness
I Logics with both knowledge and belief operators
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Unawareness

Why would an agent not know some fact ϕ? (i.e., why would
¬Kiϕ be true?)

I The agent may or may not believe ϕ, but has not ruled out
all the ¬ϕ-worlds

I The agent may believe ϕ and ruled-out the ¬ϕ-worlds, but
this was based on “bad” evidence, or was not justified, or
the agent was “epistemically lucky” (e.g., Gettier cases),...

I The agent has not yet entertained possibilities relevant to
the truth of ϕ (the agent is unaware of ϕ).
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Can we model unawareness in state-space models?

E. Dekel, B. Lipman and A. Rustichini. Standard State-Space Models
Preclude Unawareness. Econometrica, 55:1, pp. 159 - 173 (1998).
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Properties of Unawareness

1. Uϕ→ (¬Kϕ ∧ ¬K¬Kϕ)

2. ¬KUϕ

3. Uϕ→ UUϕ

Theorem. In any logic where U satisfies the above axiom
schemes, we have

1. If K satisfies Necessitation (from ϕ infer Kϕ), then for all
formulas ϕ, ¬Uϕ is derivable (the agent is aware of
everything); and

2. If K satisfies Monotonicity (from ϕ→ ψ infer Kϕ→ Kψ),
then for all ϕ and ψ, Uϕ→ ¬Kψ is derivable (if the agent is
unaware of something then the agent does not know
anything).
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B. Schipper. Online Bibliography on Models of Unawareness. http:
//www.econ.ucdavis.edu/faculty/schipper/unaw.htm.

J. Halpern. Alternative semantics for unawareness. Games and Eco-
nomic Behavior, 37, 321-339, 2001.
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¬P
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Ann does not know that P, but she believes that ¬P
is true to degree r .
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r1 − r

Ann does not know that P, but she believes that ¬P
is true to degree r .
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Combining Logics of Knowledge and Belief

M = 〈W , {∼i}i∈A, {Ri}i∈A,V〉 where
I W , ∅ is a set of states;
I each ∼i is an equivalence relation on W ;
I each Ri is a serial, transitive, Euclidean relation on W ; and
I V is a valuation function.

What is the relationship between knowledge (Ki) and believe
(Bi)?

I Each Ki is S5
I Each Bi is KD45
I Kiϕ→ Biϕ? “knowledge implies belief”
I Biϕ→ BiKiϕ? “positive certainty”
I Biϕ→ KiBiϕ? “strong introspection”
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An Issue

I Suppose that p is something you are certain of (you
believe it with probability one), but is false: ¬p ∧ Bp

I Assuming 1. B satisfies KD45, 2. K satisfies S5, 3.
knowledge implies believe and 4. positive certainty leads
to a contradiction.

I Bp → BKp

I ¬p → ¬Kp → K¬Kp → B¬Kp

I So, BKp ∧ B¬Kp also holds, but this contradictions
Bϕ→ ¬B¬ϕ.
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J. Halpern. Should Knowledge Entail Belief?. Journal of Philosophical
Logic, 25:5, 1996, pp. 483-494.
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I The set of states, with a distinguished state denoted the
“actual world”
The agent’s (hard) information (i.e., the states consistent
with what the agent knows)
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I The agent’s (hard) information (i.e., the states consistent
with what the agent knows)

I The agent’s beliefs (soft information—-the states
consistent with what the agent believes)
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Digression on Belief Change, I
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Digression on Belief Change, I
Consider the following beliefs of a rational agent:

p1 All Europeans swans are white.
p2 The bird caught in the trap is a swan.
p3 The bird caught in the trap comes from Sweden.
p4 Sweden is part of Europe.

Thus, the agent believes:
q The bird caught in the trap is white.

Now suppose the rational agent—for example, You—learn that
the bird caught in the trap is black (¬q).
Question: How should the agent incorporate ¬q into his belief
state to obtain a consistent belief state?
There are several logically consistent ways to incorporate
¬q!
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Digression on Belief Change, II

What extralogical factors serve to determine what beliefs to
give up and what beliefs to retain?
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Digression on Belief Change, III

Belief revision is a matter of choice, and the choices are to be
made in such a way that:

1. The resulting theory squares with the experience;
2. It is simple; and
3. The choices disturb the original theory as little as possible.

Research has relied on the following related guiding ideas:
1. When accepting a new piece of information, an agent

should aim at a minimal change of his old beliefs.
2. If there are different ways to effect a belief change, the

agent should give up those beliefs which are least
entrenched.
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Digression: Belief Revision

A.P. Pedersen and H. Arló-Costa. “Belief Revision”. In Continuum
Companion to Philosophical Logic. Continuum Press, 2011.

Hans Rott. Change, Choice and Inference: A Study of Belief Revision
and Nonmonotonic Reasoning. Oxford University Press, 2001.
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I The agent’s (hard) information (i.e., the states consistent
with what the agent knows)

I The agent’s beliefs (soft information—-the states
consistent with what the agent believes)
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I The agent’s beliefs (soft information—-the states
consistent with what the agent believes)

I The agent’s “contingency plan”: when the stronger beliefs
fail, go with the weaker ones.
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Sphere Models

Let W be a set of states, A system of spheres F ⊆ ℘(W) such
that:

I For each S ,S′ ∈ F , either S ⊆ S′ or S′ ⊆ S
I For any P ⊆W there is a smallest S ∈ F (according to the

subset relation) such that P ∩ S , ∅
I The spheres are non-empty

⋂
F , ∅ and cover the entire

information cell
⋃
F = W (or [w] = {v | w ∼ v})
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Let F be a system of spheres on W : for w, v ∈W , let

w �F v iff for all S ∈ F , if v ∈ S then w ∈ S

Then, �F is reflexive, transitive, and well-founded.

w �F v means that: no matter what the agent learns in the
future, as long as world v is still consistent with her beliefs and
w is still epistemically possible, then w is also consistent with
her beliefs.

Eric Pacuit 64



Plausibility Models

Epistemic Models: M = 〈W , {∼i}i∈A,V〉

Truth: M,w |= ϕ is defined as follows:

I M,w |= p iff w ∈ V(p) (with p ∈ At)
I M,w |= ¬ϕ ifM,w 6|= ϕ

I M,w |= ϕ ∧ ψ ifM,w |= ϕ andM,w |= ψ

I M,w |= Kiϕ if for each v ∈W , if w∼iv, thenM, v |= ϕ
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Plausibility Models

Epistemic-Plausibility Models: M = 〈W , {∼i}i∈A, {�i}i∈A,V〉
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Plausibility Models
Epistemic-Plausibility Models: M = 〈W , {∼i}i∈A, {�i}i∈A,V〉

Plausibility Relation: �i⊆W ×W . w �i v means

“w is at least as plausible as v.”

Properties of �i : reflexive, transitive, complete and
well-founded.

Most Plausible: For X ⊆W , let

Min�i (X) = {v ∈W | v �i w for all w ∈ X }

Assumptions:
plausibility implies possibility: if w �i v then w ∼i v.
locally-connected: if w ∼i v then either w �i v or v �i w.

Eric Pacuit 65



Plausibility Models
Epistemic-Plausibility Models: M = 〈W , {∼i}i∈A, {�i}i∈A,V〉

Plausibility Relation: �i⊆W ×W . w �i v means

“w is at least as plausible as v.”

Properties of �i : reflexive, transitive, and well-founded.

Most Plausible: For X ⊆W , let

Min�i (X) = {v ∈W | v �i w for all w ∈ X }

Assumptions:
plausibility implies possibility: if w �i v then w ∼i v.
locally-connected: if w ∼i v then either w �i v or v �i w.

Eric Pacuit 65



Plausibility Models
Epistemic-Plausibility Models: M = 〈W , {∼i}i∈A, {�i}i∈A,V〉

Plausibility Relation: �i⊆W ×W . w �i v means

“w is at least as plausible as v.”

Properties of �i : reflexive, transitive, and well-founded.

Most Plausible: For X ⊆W , let

Min�i (X) = {v ∈W | v �i w for all w ∈ X }

Assumptions:
plausibility implies possibility: if w �i v then w ∼i v.
locally-connected: if w ∼i v then either w �i v or v �i w.

Eric Pacuit 65



Plausibility Models
Epistemic-Plausibility Models: M = 〈W , {∼i}i∈A, {�i}i∈A,V〉

Plausibility Relation: �i⊆W ×W . w �i v means

“w is at least as plausible as v.”

Properties of �i : reflexive, transitive, and well-founded.

Most Plausible: For X ⊆W , let

Min�i (X) = {v ∈W | v �i w for all w ∈ X }

Assumptions:
1. plausibility implies possibility: if w �i v then w ∼i v.
2. locally-connected: if w ∼i v then either w �i v or v �i w.

Eric Pacuit 65



Plausibility Models

Epistemic-Plausibility Models: M = 〈W , {∼i}i∈A, {�i}i∈A,V〉

Truth: M,w |= ϕ is defined as follows:

I M,w |= p iff w ∈ V(p) (with p ∈ At)
I M,w |= ¬ϕ ifM,w 6|= ϕ

I M,w |= ϕ ∧ ψ ifM,w |= ϕ andM,w |= ψ

I M,w |= Kiϕ if for each v ∈W , if w∼iv, thenM, v |= ϕ

I M,w |= Biϕ if for each v ∈ Min�i ([w]i),M, v |= ϕ
[w]i = {v | w ∼i v} is the agent’s information cell.
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Beliefs via Plausibility

I W = {w1,w2,w3}

w1 � w2 and w2 � w1 (w1 and w2
are equi-plausbile)
w1 ≺ w3 (w1 � w3 and w3 � w1)
w2 ≺ w3 (w2 � w3 and w3 � w2)
{w1,w2} ⊆ Min�([wi])

w3

w2w1

A

B

D

E

ϕ
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Beliefs via Plausibility

ψ

A

B

C

D

E

ϕ

Conditional Belief: Bϕψ

Min�([[ϕ]]M) ⊆ [[ψ]]M
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Beliefs via Plausibility

ψ

C

D

E

ϕ

Conditional Belief: Bϕψ

Min�([[ϕ]]M) ⊆ [[ψ]]M
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Example

w1 w2

a

w2 �a w1
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Example

T1,T2

w1

H1,T2

w3

T1,H2

w2

H1,H2

w4

b

a

b

b

a

aa

a,b

w1 |= Ba(H1 ∧ H2) ∧ Bb(H1 ∧ H2)

w1 |= BT1
a H2

w1 |= BT1
b T2
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Grades of Doxastic Strength

wv1v0 v2

Suppose that w is the current state.

Knowledge (KP)
Belief (BP)
Safe Belief (�P)
Strong Belief (BsP)
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Grades of Doxastic Strength

¬P
w
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v1

P
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P
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Is Bϕ→ Bψϕ valid?

Is Bαϕ→ Bα∧βϕ valid?

Is Bϕ→ Bψϕ ∨ B¬ψϕ valid?

Exercise: Prove that B, Bϕ and Bs are definable in the
language with K and [�] modalities.
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M,w |= Bϕψ if for each v ∈ Min�([w] ∩ [[ϕ]]),M, v |= ϕ
where [[ϕ]] = {w | M,w |= ϕ} and [w] = {v | w ∼ v}

Core Logical Principles:
1. Bϕϕ

2. Bϕψ→ Bϕ(ψ ∨ χ)

3. (Bϕψ1 ∧ Bϕψ2)→ Bϕ(ψ1 ∧ ψ2)

4. (Bϕ1ψ ∧ Bϕ2ψ)→ Bϕ1∨ϕ2ψ

5. (Bϕψ ∧ Bψϕ)→ (Bϕχ↔ Bψχ)

J. Burgess. Quick completeness proofs for some logics of conditionals.
Notre Dame Journal of Formal Logic 22, 76 – 84, 1981.
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Types of Beliefs: Logical Characterizations

I M,w |= Kiϕ iffM,w |= Bψ
i ϕ for all ψ

i knows ϕ iff i continues to believe ϕ given any new information

I M,w |= [�i]ϕ iffM,w |= Bψ
i ϕ for all ψ withM,w |= ψ.

i robustly believes ϕ iff i continues to believe ϕ given any true
formula.

I M,w |= Bs
i ϕ iffM,w |= Biϕ andM,w |= Bψ

i ϕ for all ψ with
M,w |= ¬Ki(ψ→ ¬ϕ).
i strongly believes ϕ iff i believes ϕ and continues to believe ϕ
given any evidence (truthful or not) that is not known to
contradict ϕ.

Eric Pacuit 71



Types of Beliefs: Logical Characterizations

I M,w |= Kiϕ iffM,w |= Bψ
i ϕ for all ψ

i knows ϕ iff i continues to believe ϕ given any new information

I M,w |= [�i]ϕ iffM,w |= Bψ
i ϕ for all ψ withM,w |= ψ.

i robustly believes ϕ iff i continues to believe ϕ given any true
formula.

I M,w |= Bs
i ϕ iffM,w |= Biϕ andM,w |= Bψ

i ϕ for all ψ with
M,w |= ¬Ki(ψ→ ¬ϕ).
i strongly believes ϕ iff i believes ϕ and continues to believe ϕ
given any evidence (truthful or not) that is not known to
contradict ϕ.

Eric Pacuit 71



Types of Beliefs: Logical Characterizations

I M,w |= Kiϕ iffM,w |= Bψ
i ϕ for all ψ

i knows ϕ iff i continues to believe ϕ given any new information

I M,w |= [�i]ϕ iffM,w |= Bψ
i ϕ for all ψ withM,w |= ψ.

i robustly believes ϕ iff i continues to believe ϕ given any true
formula.

I M,w |= Bs
i ϕ iffM,w |= Biϕ andM,w |= Bψ

i ϕ for all ψ with
M,w |= ¬Ki(ψ→ ¬ϕ).
i strongly believes ϕ iff i believes ϕ and continues to believe ϕ
given any evidence (truthful or not) that is not known to
contradict ϕ.

Eric Pacuit 71



Additional Axioms

Success: Bϕ
i ϕ

Knowledge entails belief Kiϕ→ Bψ
i ϕ

Full introspection: Bϕ
i ψ→ KiB

ϕ
i ψ and ¬Bϕ

i ψ→ Ki¬Bϕ
i ψ

Cautious Monotonicity: (Bϕ
i α ∧ Bϕ

i β)→ Bϕ∧β
i α

Rational Monotonicity: (Bϕ
i α ∧ ¬Bϕ

i ¬β)→ Bϕ∧β
i α
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Fitch’s Paradox

Fitch (1963) derived an unexpected consequence from the
thesis, advocated by some anti-realists, that every truth is
knowable:

(VT) q → ^Kq,
where ^ is a possibility operator (more on this later).

Fitch make two modest assumptions for K , Kϕ→ ϕ (T) and
K(ϕ ∧ ψ)→ (Kϕ ∧ Kψ) (M), and two modest assumptions for
^:

I ^ is the dual of � for necessity, so ¬^ϕ follows from �¬ϕ.
I � obeys the rule of Necessitation: if ϕ is a theorem, so is
�ϕ.
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Fitch’s Paradox

For an arbitrary p, consider the following instance of (VT):

(0) (p ∧ ¬Kp)→ ^K(p ∧ ¬Kp)

Here is the proof for Fitch’s Paradox:
(1) K(p ∧ ¬Kp)→ (Kp ∧ K¬Kp) instance of M axiom
(2) K¬Kp → ¬Kp instance of T axiom
(3) K(p ∧ ¬Kp)→ (Kp ∧ ¬Kp) from (1) and (2) by PL
(4) ¬K(p ∧ ¬Kp) from (3) by PL
(5) �¬K(p ∧ ¬Kp) from (4) by �-Necessitation
(6) ¬^K(p ∧ ¬Kp) from (5) by � - ^ Duality
(7) ¬(p ∧ ¬Kp) from (0) by PL
(8) p → Kp from (7) by classical PL

Since p was arbitrary, we have shown that every truth is known.
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The Question

Fitch’s Paradox leaves us with the question: what must we
require in addition to the truth of ϕ to ensure the knowability of
ϕ?

There is a fairly large literature on knowability and related
issues. See, e.g.:

J. Salerno. 2009. New Essays on the Knowability Paradox, OUP

J. van Benthem. 2004. “What One May Come to Know,” Analysis.

P. Balbiani et al. 2008. “‘Knowable’ as ‘Known after an Announcement,”’

Review of Symbolic Logic.

Eric Pacuit 75



The Question

Fitch’s Paradox leaves us with the question: what must we
require in addition to the truth of ϕ to ensure the knowability of
ϕ?

There is a fairly large literature on knowability and related
issues. See, e.g.:

J. Salerno. 2009. New Essays on the Knowability Paradox, OUP

J. van Benthem. 2004. “What One May Come to Know,” Analysis.

P. Balbiani et al. 2008. “‘Knowable’ as ‘Known after an Announcement,”’

Review of Symbolic Logic.

Eric Pacuit 75



Dynamic Epistemic Logic

The key idea of dynamic epistemic logic is that we can
represent changes in agents’ epistemic states by transforming
models.

In the simplest case, we model an agent’s acquisition of
knowledge by the elimination of possibilities from an initial
epistemic model.
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Finding out that ϕ

M = 〈W , {∼i}i∈A, {�i}i∈A,V〉

M
′ = 〈W ′, {∼′i }i∈A, {�

′

i }i∈A,V |W ′〉

Find out that ϕ

Eric Pacuit 77



Example: College Park and Amsterdam

Recall the College Park agent who doesn’t know whether it’s
raining in Amsterdam, whose epistemic state is represented by
the model:

r

w1 w2

b
b ,d b ,d

What happens when the Amsterdam agent calls the College
Park agent on the phone and says, “It’s raining in Amsterdam”?

We model the change in b ’s epistemic state by eliminating all
epistemic possibilities in which it’s not raining in Amsterdam.
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Model Update

We can easily give a formal definition that captures the idea of
knowledge acquisition as the elimination of possibilities.

GivenM = 〈W , {Ra | a ∈ Agt},V〉, the updated model M|ϕ is
obtained by deleting fromM all worlds in which ϕ was false.

Formally,M|ϕ = 〈W|ϕ, {Ra|ϕ | a ∈ Agt},V|ϕ〉 is the model s.th.:

W|ϕ = {v ∈W | M, v � ϕ};

Ra|ϕ is the restriction of Ra to W|ϕ;

V|ϕ(p) is the intersection of V(p) and W|ϕ.

In the single-agent case, this models the agent learning ϕ. In
the multi-agent case, this models all agents publicly learning ϕ.
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Public Announcement Logic

One of the big ideas of dynamic epistemic logic is to add to our
formal language operators that can describe the kinds of model
updates that we just saw for the College Park and Amsterdam
example.

The language of Public Announcement Logic (PAL) is given by:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [!ϕ]ϕ

Read [!ϕ]ψ as “after (every) true announcement of ϕ, ψ.”

Read 〈!ϕ〉ψ := ¬[!ϕ]¬ψ as “after a true announcement of ϕ, ψ.”

Eric Pacuit 81



Public Announcement Logic

One of the big ideas of dynamic epistemic logic is to add to our
formal language operators that can describe the kinds of model
updates that we just saw for the College Park and Amsterdam
example.

The language of Public Announcement Logic (PAL) is given by:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [!ϕ]ϕ

Read [!ϕ]ψ as “after (every) true announcement of ϕ, ψ.”

Read 〈!ϕ〉ψ := ¬[!ϕ]¬ψ as “after a true announcement of ϕ, ψ.”

Eric Pacuit 81



Public Announcement Logic

One of the big ideas of dynamic epistemic logic is to add to our
formal language operators that can describe the kinds of model
updates that we just saw for the College Park and Amsterdam
example.

The language of Public Announcement Logic (PAL) is given by:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [!ϕ]ϕ

Read [!ϕ]ψ as “after (every) true announcement of ϕ, ψ.”

Read 〈!ϕ〉ψ := ¬[!ϕ]¬ψ as “after a true announcement of ϕ, ψ.”

Eric Pacuit 81



Public Announcement Logic

One of the big ideas of dynamic epistemic logic is to add to our
formal language operators that can describe the kinds of model
updates that we just saw for the College Park and Amsterdam
example.

The language of Public Announcement Logic (PAL) is given by:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [!ϕ]ϕ

Read [!ϕ]ψ as “after (every) true announcement of ϕ, ψ.”

Read 〈!ϕ〉ψ := ¬[!ϕ]¬ψ as “after a true announcement of ϕ, ψ.”

Eric Pacuit 81



Public Announcement Logic

Read [!ϕ]ψ as “after (every) true announcement of ϕ, ψ.”

Read 〈!ϕ〉ψ := ¬[!ϕ]¬ψ as “after a true announcement of ϕ, ψ.”

The truth clause for the dynamic operator [!ϕ] is:

I M,w � [!ϕ]ψ iffM,w � ϕ implies M|ϕ,w � ψ.

So if ϕ is false, [!ϕ]ψ is vacuously true. Here is the 〈!ϕ〉 clause:

I M,w � 〈!ϕ〉ψ iffM,w � ϕ and M|ϕ,w � ψ.

Big Idea: we evaluate [!ϕ]ψ and 〈!ϕ〉ψ not by looking at other
worlds in the same model, but rather by looking at a new model.
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Public Announcement Logic

SupposeM = 〈W , {∼i}i∈A, {�i}i∈A,V〉 is a multi-agent Kripke
Model

M,w |= [ψ]ϕ iffM,w |= ψ impliesM|ψ,w |= ϕ

whereM|ψ = 〈W ′, {∼′i }i∈A, {�
′

i }i∈A,V
′
〉 with

I W ′ = W ∩ {w | M,w |= ψ}

I For each i, ∼′i = ∼i ∩ (W ′
×W ′)

I For each i, �′i = �i ∩ (W ′
×W ′)

I for all p ∈ At, V ′(p) = V(p) ∩W ′
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Public Announcement Logic

[ψ]p ↔ (ψ→ p)

[ψ]¬ϕ ↔ (ψ→ ¬[ψ]ϕ)

[ψ](ϕ ∧ χ) ↔ ([ψ]ϕ ∧ [ψ]χ)

[ψ][ϕ]χ ↔ [ψ ∧ [ψ]ϕ]χ

[ψ]Kiϕ ↔ (ψ→ Ki(ψ→ [ψ]ϕ))
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Public Announcement Logic

[ψ]p ↔ (ψ→ p)

[ψ]¬ϕ ↔ (ψ→ ¬[ψ]ϕ)

[ψ](ϕ ∧ χ) ↔ ([ψ]ϕ ∧ [ψ]χ)

[ψ][ϕ]χ ↔ [ψ ∧ [ψ]ϕ]χ

[ψ]Kiϕ ↔ (ψ→ Ki(ψ→ [ψ]ϕ))

Theorem Every formula of Public Announcement Logic is
equivalent to a formula of Epistemic Logic.
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I [q]Kq

I Kp → [q]Kp

I Bϕ→ [ψ]Bϕ

p,¬q

w1

¬p,¬q

w2

p,q

w3

I [ϕ]ϕ
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Public Announcement vs. Conditional Belief
Are [ϕ]Bψ and Bϕψ different?

Yes!

p,q

w1

p,¬q

w2

¬p,q

w3

1 2

I w1 |= B1B2q
I w1 |= Bp

1 B2q
I w1 |= [p]¬B1B2q
I More generally, Bp

i (p ∧ ¬Kip) is satisfiable but
[p]Bi(p ∧ ¬Kip) is not.
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The Logic of Public Observation

I [ϕ]Kψ↔ (ϕ→ K(ϕ→ [ϕ]ψ))

I [ϕ][�]ψ↔ (ϕ→ [�](ϕ→ [ϕ]ψ))

I Belief: [ϕ]Bψ= (ϕ→ B(ϕ→ [ϕ]ψ))

[ϕ]Bψ↔ (ϕ→ Bϕ[ϕ]ψ)
[ϕ]Bαψ↔ (ϕ→ Bϕ∧[ϕ]α[ϕ]ψ)
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Group Knowledge
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Example (1)

Suppose there are two friends Ann and Bob are on a bus
separated by a crowd.

Before the bus comes to the next stop a
mutual friend from outside the bus yells “get off at the next stop
to get a drink?”.

Say Ann is standing near the front door and Bob near the back
door. When the bus comes to a stop, will they get off?

D. Lewis. Convention. 1969.

M. Chwe. Rational Ritual. 2001.
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“Common Knowledge” is informally described as what any fool
would know, given a certain situation: It encompasses what is
relevant, agreed upon, established by precedent, assumed,
being attended to, salient, or in the conversational record.

It is not Common Knowledge who “defined” Common
Knowledge!
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The first formal definition of common knowledge?
M. Friedell. On the Structure of Shared Awareness. Behavioral Sci-
ence (1969).

R. Aumann. Agreeing to Disagree. Annals of Statistics (1976).

The first rigorous analysis of common knowledge
D. Lewis. Convention, A Philosophical Study. 1969.

Fixed-point definition: γ := i and j know that (ϕ and γ)
G. Harman. Review of Linguistic Behavior. Language (1977).

J. Barwise. Three views of Common Knowledge. TARK (1987).

Shared situation: There is a shared situation s such that (1) s
entails ϕ, (2) s entails everyone knows ϕ, plus other conditions
H. Clark and C. Marshall. Definite Reference and Mutual Knowledge. 1981.

M. Gilbert. On Social Facts. Princeton University Press (1989).
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P. Vanderschraaf and G. Sillari. “Common Knowledge”, The Stanford
Encyclopedia of Philosophy (2009).
http://plato.stanford.edu/entries/common-knowledge/.
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The “Standard” Account

E

W

R. Aumann. Agreeing to Disagree. Annals of Statistics
(1976).

R. Fagin, J. Halpern, Y. Moses and M. Vardi. Reasoning
about Knowledge. MIT Press, 1995.

Eric Pacuit 92



The “Standard” Account

E

W

W is a set of states or worlds.
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The “Standard” Account

E

W

An event/proposition is any (definable) subset E ⊆
W

Eric Pacuit 92



The “Standard” Account

E

W

At each state, agents are assigned a set of states
they consider possible (according to their informa-
tion).
The information may be (in)correct, partitional, ....

Eric Pacuit 92



The “Standard” Account

E

W

Knowledge Function: Ki : ℘(W) → ℘(W) where
Ki(E) = {w | Ri(w) ⊆ E}
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The “Standard” Account

E

W

w

w ∈ KA (E) and w < KB(E)
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The “Standard” Account

E

W

w

The model also describes the agents’ higher-order
knowledge/beliefs

Eric Pacuit 92



The “Standard” Account

E

W

w

Everyone Knows: K(E) =
⋂

i∈A Ki(E), K0(E) = E,
Km(E) = K(Km−1(E))
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The “Standard” Account

E

W

w

Common Knowledge: C : ℘(W)→ ℘(W) with

C(E) =
⋂
m≥0

Km(E)
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The “Standard” Account

E

W

w

w ∈ K(E) w < C(E)
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The “Standard” Account

E

W

w

w ∈ C(E)
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Fact. For all i ∈ A and E ⊆W , KiC(E) = C(E).
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Fact. For all i ∈ A and E ⊆W , KiC(E) = C(E).

Suppose you are told “Ann and Bob are going
together,”’ and respond “sure, that’s common
knowledge.” What you mean is not only that everyone
knows this, but also that the announcement is
pointless, occasions no surprise, reveals nothing new;
in effect, that the situation after the announcement
does not differ from that before. ...the event “Ann and
Bob are going together” — call it E — is common
knowledge if and only if some event — call it F —
happened that entails E and also entails all players’
knowing F (like all players met Ann and Bob at an
intimate party). (Aumann, pg. 271, footnote 8)
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Fact. For all i ∈ A and E ⊆W , KiC(E) = C(E).

An event F is self-evident if Ki(F) = F for all i ∈ A.

Fact. An event E is commonly known iff some self-evident
event that entails E obtains.
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Fact. For all i ∈ A and E ⊆W , KiC(E) = C(E).

An event F is self-evident if Ki(F) = F for all i ∈ A.

Fact. An event E is commonly known iff some self-evident
event that entails E obtains.

Fact. w ∈ C(E) if every finite path starting at w ends in a state
in E

The following axiomatize common knowledge:
I C(ϕ→ ψ)→ (Cϕ→ Cψ)

I Cϕ→ (ϕ ∧ ECϕ) (Fixed-Point)
I C(ϕ→ Eϕ)→ (ϕ→ Cϕ) (Induction)
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An Example

Two players Ann and Bob are told that the following will happen.
Some positive integer n will be chosen and one of n, n + 1 will
be written on Ann’s forehead, the other on Bob’s. Each will be
able to see the other’s forehead, but not his/her own.

Suppose the number are (2,3).

Do the agents know there numbers are less than 1000?

Is it common knowledge that their numbers are less than 1000?
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(0,1) (2,1)

(2,3) (4,3)

(4,5) (6,5)

(6,7)

A

B

A

B

A

B
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The Fixed-Point Definition

fE(X) = K(E ∩ X) =
⋂

i∈A Ki(E ∩ X)

I C(E) is a fixed point of fE : fE(C(E)) = K(E ∩ C(E)) =
K(C(E)) =

⋂
i∈A Ki(C(E)) =

⋂
i∈AC(E) = C(E)

I The are other fixed points of fE : fE(⊥) = ⊥

I fE is monotonic: A ⊆ B implies E ∩ A ⊆ E ∩ B. Then
fE(E ∩ A) = K(E ∩ A) ⊆ K(E ∩ B) = fE(E ∩ B)

I (Tarski) Every monotone operator has a greatest (and
least) fixed point

I Let K ∗(E) be the greatest fixed point of fE .

I Fact. K ∗(E) = C(E).
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The Fixed-Point Definition

Separating the fixed-point/iteration definition of common
knowledge/belief:

J. Barwise. Three views of Common Knowledge. TARK (1987).

J. van Benthem and D. Saraenac. The Geometry of Knowledge. As-
pects of Universal Logic (2004).

A. Heifetz. Iterative and Fixed Point Common Belief. Journal of Philo-
sophical Logic (1999).
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Some Issues

I What does a group know/believe/accept? vs. what can a
group (come to) know/believe/accept?

C. List. Group knowledge and group rationality: a judgment aggrega-
tion perspective. Episteme (2008).

I Other “group informational attitudes”: distributed
knowledge, common belief, . . .

I Where does common knowledge come from?
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Distributed Knowledge

DG(E) = {w |

⋂
i∈G

Ri(w)

 ⊆ E}

I KA (p) ∧ KB(p → q)→ DA ,B(q)

I DG(ϕ)→
∧

i∈G Kiϕ

F. Roelofsen. Distributed Knowledge. Journal of Applied Nonclassical
Logic (2006).

w ∈ KG(E) iff RG(w) ⊆ E (without necessarily RG(w) =
⋂
i∈G

Ri(w))

A. Baltag and S. Smets. Correlated Knowledge: an Epistemic-Logic
view on Quantum Entanglement. Int. Journal of Theoretical Physics
(2010).
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Ingredients of a Logical Analysis of Rational Agency

⇒ informational attitudes (eg., knowledge, belief, certainty)
⇒ time, actions and ability
⇒ motivational attitudes (eg., preferences)
⇒ group notions (e.g., common knowledge and coalitional

ability)
⇒ normative attitudes (eg., obligations)
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⇒ time, actions and ability
⇒ motivational attitudes (eg., preferences)
X group notions (e.g., common knowledge)
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Robert Aumann. Agreeing to Disagree. Annals of Statistics 4 (1976).

Theorem. Suppose that n agents share a common prior and
have different private information. If there is common
knowledge in the group of the posterior probabilities, then the
posteriors must be equal.

S. Morris. The common prior assumption in economic theory. Eco-
nomics and Philosophy, 11, pgs. 227 - 254, 1995.
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Generalized Aumann’s Theorem

Qualitative versions: like-minded individuals cannot agree to
make different decisions.

M. Bacharach. Some Extensions of a Claim of Aumann in an Ax-
iomatic Model of Knowledge. Journal of Economic Theory (1985).

J.A.K. Cave. Learning to Agree. Economic Letters (1983).

D. Samet. Agreeing to disagree: The non-probabilistic case. Games
and Economic Behavior, Vol. 69, 2010, 169-174.
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The Framework

Knowledge Structure: 〈W , {Πi}i∈A〉 where each Πi is a
partition on W (Πi(w) is the cell in Πi containing w).

Decision Function: Let D be a nonempty set of decisions. A
decision function for i ∈ A is a function di : W → D. A vector
d = (d1, . . . ,dn) is a decision function profile. Let
[di = d] = {w | di(w) = d}.

(A1) Each agent knows her own decision:

[di = d] ⊆ Ki([di = d])
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Comparing Knowledge

[j � i]: agent j is at least as knowledgeable as agent i.

[j � i] :=
⋂

E∈℘(W)

(Ki(E)⇒ Kj(E)) =
⋂

E∈℘(W)

(¬Ki(E) ∪ Kj(E))

w ∈ [j � i] then j knows at w every event that i knows there.

[j ∼ i] = [j � i] ∩ [i � j]
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The Sure-Thing Principle

A businessman contemplates buying a certain piece
of property. He considers the outcome of the next
presidential election relevant.

So, to clarify the matter
to himself, he asks whether he would buy if he knew
that the Democratic candidate were going to win, and
decides that he would. Similarly, he considers whether
he would buy if he knew a Republican candidate were
going to win, and again he finds that he would. Seeing
that he would buy in either event, he decides that he
should buy, even though he does not know which
event obtains, or will obtain, as we would ordinarily
say. (Savage, 1954)
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The sure-thing principle cannot appropriately be
accepted as a postulate...because it would introduce
new undefined technical terms referring to knowledge
and possibility that would render it mathematically
useless without still more postulates governing these
terms. It will be preferable to regard the principle as a
loose one that suggests certain formal postulates well
articulated with P1 [the transitivity of preferences]
(Savage, 1954)
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Sure-Thing Principle

Should I study or have a beer?

Either I pass or I won’t pass the
exam. If I pass, it is better to drink and pass, so I should drink.
If I fail, it is better to drink and fail, so I should drink. I should
drink in either case, so I should have a drink.

Eric Pacuit 108



Sure-Thing Principle

Should I study or have a beer? Either I pass or I won’t pass the
exam.

If I pass, it is better to drink and pass, so I should drink.
If I fail, it is better to drink and fail, so I should drink. I should
drink in either case, so I should have a drink.

Eric Pacuit 108



Sure-Thing Principle

Should I study or have a beer? Either I pass or I won’t pass the
exam. If I pass, it is better to drink and pass, so I should drink.
If I fail, it is better to drink and fail, so I should drink.

I should
drink in either case, so I should have a drink.

Eric Pacuit 108



Sure-Thing Principle

Should I study or have a beer? Either I pass or I won’t pass the
exam. If I pass, it is better to drink and pass, so I should drink.
If I fail, it is better to drink and fail, so I should drink. I should
drink in either case, so I should have a drink.

Eric Pacuit 108



Sure-Thing Principle

It is not the logical principle ϕ→ χ and ψ→ χ then ϕ ∨ ψ→ χ.

There is a book I want to read which was written by one of two
authors. If I know it is written by author A then I will read it. If I
know it is written by author B then I will read it. If I know it is
written by either author A or author B then I may not choose to
read the book.
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Sure-Thing Principle
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The Nixon Diamond

You’re told (from a reliable source) that Nixon is a republican,
which suggests that he is a Hawk. You’re also told (from a
reliable source) that Nixon is a Quaker, which suggests that he
is a Dove.

Either being a Hawk or a Dove implies having
extreme political views. Should you conclude that Nixon has
extreme political views?
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Floating Conclusions
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J. Horty. Skepticism and floating conclusions. Artificial Intelligence,
135, pp. 55 - 72, 2002.
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Your parents have 1M inheritance which will is split between
you mother and father (each may give you 0.5M).

Your brother
(a reliable source) says that you will receive the money from
your Mother (but not your Father). Your sister (a reliable source)
says that you will receive the money from your Father (but not
your Mother). You want to buy a yacht which requires a large
deposit and you can only afford it provided you inherit the
money. Should you make a deposit on the yacht?
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Interpersonal Sure-Thing Principle (ISTP)

For any pair of agents i and j and decision d,

Ki([j � i] ∩ [dj = d]) ⊆ [di = d]
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Interpersonal Sure-Thing Principle (ISTP): Illustration

Suppose that Alice and Bob, two detectives who graduated the
same police academy, are assigned to investigate a murder
case.

If they are exposed to different evidence, they may reach
different decisions. Yet, being the students of the same
academy, the method by which they arrive at their conclusions
is the same. Suppose now that detective Bob, a father of four
who returns home every day at five oclock, collects all the
information about the case at hand together with detective
Alice.
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Interpersonal Sure-Thing Principle (ISTP): Illustration

However, Alice, single and a workaholic, continues to collect
more information every day until the wee hours of the morning
— information which she does not necessarily share with Bob.

Obviously, Bob knows that Alice is at least as knowledgeable
as he is. Suppose that he also knows what Alices decision is.
Since Alice uses the same investigation method as Bob, he
knows that had he been in possession of the more extensive
knowledge that Alice has collected, he would have made the
same decision as she did. Thus, this is indeed his decision.
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Implications of ISTP

Proposition. If the decision function profile d satisfies ISTP,
then

[i ∼ j] ⊆
⋃
d∈D

([di = d] ∩ [dj = d])
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ISTP Expandability

Agent i is an epistemic dummy if it is always the case that all
the agents are at least as knowledgeable as i. That is, for each
agent j,

[j � i] = W

A decision function profile d on 〈W ,Π1, . . . ,Πn〉 is ISTP
expandable if for any expanded structure 〈W ,Π1, . . . ,Πn+1〉

where n + 1 is an epistemic dummy, there exists a decision
function dn+1 such that (d1,d2, . . . ,dn+1) satisfies ISTP.
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ISTP Expandability: Illustration

Suppose that after making their decisions, Alice and Bob are
told that another detective, one E.P. Dummy, who graduated the
very same police academy, had also been assigned to
investigate the same case.

In principle, they would need to
review their decisions in light of the third detectives knowledge:
knowing what they know about the third detective, his usual
sources of information, for example, may impinge upon their
decision.
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ISTP Expandability: Illustration

But this is not so in the case of detective Dummy. It is
commonly known that the only information source of this
detective, known among his colleagues as the couch detective,
is the TV set.

Thus, it is commonly known that every detective
is at least as knowledgeable as Dummy. The news that he had
been assigned to the same case is completely irrelevant to the
conclusions that Alice and Bob have reached. Obviously, based
on the information he gets from the media, Dummy also makes
a decision. We may assume that the decisions made by the
three detectives satisfy the ISTP, for exactly the same reason
we assumed it for the two detectives decisions
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Generalized Agreement Theorem

If d is an ISTP expandable decision function profile on a
partition structure 〈W ,Π1, . . . ,Πn〉, then for any decisions
d1, . . . ,dn which are not identical, C(

⋂
i[di = di]) = ∅.
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