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Plausibility Models

Epistemic Models: M = 〈W , {∼i}i∈A,V〉

Truth: M,w |= ϕ is defined as follows:

I M,w |= p iff w ∈ V(p) (with p ∈ At)
I M,w |= ¬ϕ ifM,w 6|= ϕ

I M,w |= ϕ ∧ ψ ifM,w |= ϕ andM,w |= ψ

I M,w |= Kiϕ if for each v ∈W , if w∼iv, thenM, v |= ϕ
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Plausibility Models
Epistemic-Plausibility Models: M = 〈W , {∼i}i∈A, {�i}i∈A,V〉

Plausibility Relation: �i⊆W ×W . w �i v means

“w is at least as plausible as v.”

Properties of �i : reflexive, transitive, complete and
well-founded.

Most Plausible: For X ⊆W , let

Min�i (X) = {v ∈W | v �i w for all w ∈ X }

Assumptions:
plausibility implies possibility: if w �i v then w ∼i v.
locally-connected: if w ∼i v then either w �i v or v �i w.
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Plausibility Models

Epistemic-Plausibility Models: M = 〈W , {∼i}i∈A, {�i}i∈A,V〉

Truth: M,w |= ϕ is defined as follows:

I M,w |= p iff w ∈ V(p) (with p ∈ At)
I M,w |= ¬ϕ ifM,w 6|= ϕ

I M,w |= ϕ ∧ ψ ifM,w |= ϕ andM,w |= ψ

I M,w |= Kiϕ if for each v ∈W , if w∼iv, thenM, v |= ϕ

I M,w |= Biϕ if for each v ∈ Min�i ([w]i),M, v |= ϕ
[w]i = {v | w ∼i v} is the agent’s information cell.
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Beliefs via Plausibility

I W = {w1,w2,w3}

w1 � w2 and w2 � w1 (w1 and w2
are equi-plausbile)
w1 ≺ w3 (w1 � w3 and w3 � w1)
w2 ≺ w3 (w2 � w3 and w3 � w2)
{w1,w2} ⊆ Min�([wi])

w3

w2w1
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ϕ
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Beliefs via Plausibility

ψ

A

B

C

D

E

ϕ

Conditional Belief: Bϕψ

Min�([[ϕ]]M) ⊆ [[ψ]]M
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Beliefs via Plausibility

ψ

C

D

E

ϕ

Conditional Belief: Bϕψ

Min�([[ϕ]]M) ⊆ [[ψ]]M
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Finding out that ϕ

M = 〈W , {∼i}i∈A, {�i}i∈A,V〉

M
′ = 〈W ′, {∼′i }i∈A, {�

′

i }i∈A,V |W ′〉

Find out that ϕ
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Model Update

GivenM = 〈W , {Ra | a ∈ Agt},V〉, the updated model M|ϕ is
obtained by deleting fromM all worlds in which ϕ was false.

Formally,M|ϕ = 〈W|ϕ, {Ra|ϕ | a ∈ Agt},V|ϕ〉 is the model where:

W|ϕ = {v ∈W | M, v � ϕ};

Ra|ϕ is the restriction of Ra to W|ϕ;

V|ϕ(p) is the intersection of V(p) and W|ϕ.
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Public Announcement Logic

The language of Public Announcement Logic (PAL) is given by:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | [!ϕ]ϕ

Read [!ϕ]ψ as “after (every) true announcement of ϕ, ψ.”

Read 〈!ϕ〉ψ := ¬[!ϕ]¬ψ as “after a true announcement of ϕ, ψ.”
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Public Announcement Logic

Read [!ϕ]ψ as “after (every) true announcement of ϕ, ψ.”

Read 〈!ϕ〉ψ := ¬[!ϕ]¬ψ as “after a true announcement of ϕ, ψ.”

The truth clause for the dynamic operator [!ϕ] is:

I M,w � [!ϕ]ψ iffM,w � ϕ implies M|ϕ,w � ψ.

So if ϕ is false, [!ϕ]ψ is vacuously true. Here is the 〈!ϕ〉 clause:

I M,w � 〈!ϕ〉ψ iffM,w � ϕ and M|ϕ,w � ψ.

Key Idea: we evaluate [!ϕ]ψ and 〈!ϕ〉ψ not by looking at other
worlds in the same model, but rather by looking at a new model.
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Public Announcement Logic

SupposeM = 〈W , {∼i}i∈A, {�i}i∈A,V〉 is a multi-agent Kripke
Model

M,w |= [ψ]ϕ iffM,w |= ψ impliesM|ψ,w |= ϕ

whereM|ψ = 〈W ′, {∼′i }i∈A, {�
′

i }i∈A,V
′
〉 with

I W ′ = W ∩ {w | M,w |= ψ}

I For each i, ∼′i = ∼i ∩ (W ′
×W ′)

I For each i, �′i = �i ∩ (W ′
×W ′)

I for all p ∈ At, V ′(p) = V(p) ∩W ′
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Public Announcement Logic

[ψ]p ↔ (ψ→ p)

[ψ]¬ϕ ↔ (ψ→ ¬[ψ]ϕ)

[ψ](ϕ ∧ χ) ↔ ([ψ]ϕ ∧ [ψ]χ)

[ψ][ϕ]χ ↔ [ψ ∧ [ψ]ϕ]χ

[ψ]Kiϕ ↔ (ψ→ Ki(ψ→ [ψ]ϕ))
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Public Announcement Logic

[ψ]p ↔ (ψ→ p)

[ψ]¬ϕ ↔ (ψ→ ¬[ψ]ϕ)

[ψ](ϕ ∧ χ) ↔ ([ψ]ϕ ∧ [ψ]χ)

[ψ][ϕ]χ ↔ [ψ ∧ [ψ]ϕ]χ

[ψ]Kiϕ ↔ (ψ→ Ki(ψ→ [ψ]ϕ))

Theorem Every formula of Public Announcement Logic is
equivalent to a formula of Epistemic Logic.
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Finding out that ϕ

M = 〈W , {∼i}i∈A, {�i}i∈A,V〉

M
′ = 〈W ′, {∼′i }i∈A, {�

′

i }i∈A,V |W ′〉

Find out that ϕ
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I Epistemic states: AGM, Plausibility Models, Bayesian
Model (and the many variations)

I “Finding out that ϕ”
• Learn that ϕ
• Suppose that ϕ
• Accept ϕ
• ...

I How did you find out that ϕ?
• Directly observed ϕ
• Indirectly observed ϕ
• Told ‘ϕ’ (by an epistemic peer, by an expert, by a trusted

individual)
• ...

I Belief change over time
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The Theory of Belief Revision

C. Alchourrón, P. Gärdenfors and D. Makinson. On the logic of theory
change: Partial meet contraction and revision functions. Journal of
Symbolic Logic, 50, 510 - 530, 1985.

Hans Rott. Change, Choice and Inference: A Study of Belief Revision
and Nonmonotonic Reasoning. Oxford University Press, 2001.

A.P. Pedersen and H. Arló-Costa. “Belief Revision.”. In Continuum
Companion to Philosophical Logic. Continuum Press, 2011.
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B ∗ ϕ

Initial set of beliefs New evidence ϕ

Revision operator: ∗ : B ×L → B
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Belief Revision via Plausibility

I W = {w1,w2,w3}

w1 � w2 and w2 � w1 (w1 and w2
are equi-plausbile)
w1 ≺ w3 (w1 � w3 and w3 � w1)
w2 ≺ w3 (w2 � w3 and w3 � w2)
{w1,w2} ⊆ Min�([wi])

w3

w2w1

A

B

D

E

ϕ
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Belief Revision via Plausibility
ψ

A

B

C

D

E

ϕ

Conditional Belief: Bϕψ

Min�([[ϕ]]M) ⊆ [[ψ]]M

Conservative Upgrade: Information from a trusted source
(↑ϕ): A ≺i C ≺i D ≺i B ∪ E

Conservative Upgrade: Information from a trusted source
(↑ϕ): A ≺i C ≺i D ≺i B ∪ EEric Pacuit 14
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Belief Revision via Plausibility

A

B

C

D

E

ϕ

Incorporate the new information ϕ
(!ϕ): A ≺i B

Conservative Upgrade: Information from a trusted source
(↑ϕ): A ≺i C ≺i D ≺i B ∪ E
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Belief Revision via Plausibility
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Public Announcement: Information from an infallible source
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T1,T2

w1

H1,T2

w3

T1,H2

w2

H1,H2

w4

Min�([w1]) = {w4}, so w1 |= B(H1 ∧ H2)

Min�([w1] ∩ [[T1]]M) = {w2}, so w1 |= BT1H2

Min�([w1] ∩ [[T1]]M) = {w3}, so w1 |= BT2H1
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T1,T2

w1

H1,T2

w3

T1,H2

w2

H1,H2

w4

Suppose the agent finds out that T1 is true.
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T1, T2

w1

H1, T2

w3

T1, H2

w2

H1, H2

w4

Suppose the agent finds out that T1 is/may be true.
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!(T1)
=⇒ T1,T2

w1

T1,H2

w2

↑(T1)
=⇒ T1,H2

w2

H1,H2

w4

H1,T2

w3

T1,T2

w1
BT2H1

⇑(T1)
=⇒ T1,H2

w2

T1,T2

w1

H1,H2

w4

H1,T2

w3
BT2T1
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Informative Actions

A

B

C

D

E

ϕ

Public Announcement: Information from an infallible source
(!ϕ): A ≺i B M

!ϕ = 〈W !ϕ, {∼
!ϕ
i }i∈A,V

!ϕ
〉

W !ϕ = [[ϕ]]M
∼

!ϕ
i =∼i ∩(W !ϕ

×W !ϕ)

�
!ϕ
i =�i ∩(W !ϕ

×W !ϕ)
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Informative Actions

A

B

C

D

E

ϕ

Radical Upgrade: (⇑ϕ): A ≺i B ≺i C ≺i D ≺i E,
M
⇑ϕ = 〈W , {∼i}i∈A, {�

⇑ϕ
i }i∈A,V〉

Let [[ϕ]]wi = {x | M, x |= ϕ} ∩ [w]i

I for all x ∈ [[ϕ]]wi and y ∈ [[¬ϕ]]wi , set x ≺⇑ϕi y,
I for all x , y ∈ [[ϕ]]wi , set x �⇑ϕi y iff x �i y, and
I for all x , y ∈ [[¬ϕ]]wi , set x �⇑ϕi y iff x �i y.
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Informative Actions

A

B

C

D

E

ϕ

Conservative Upgrade: (↑ϕ): A ≺i C ≺i D ≺i B ∪ E

Conservative upgrade is radical upgrade with the formula

besti(ϕ,w) := Min�i ([w]i ∩ {x | M, x |= ϕ})

1. If v ∈ besti(ϕ,w) then v ≺↑ϕi x for all x ∈ [w]i , and

2. for all x , y ∈ [w]i − besti(ϕ,w), x �↑ϕi y iff x �i y.
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Recursion Axioms

[⇑ϕ]Bψχ↔ (L(ϕ ∧ [⇑ϕ]ψ) ∧ Bϕ∧[⇑ϕ]ψ[⇑ϕ]χ)∨

(¬L(ϕ ∧ [⇑ϕ]ψ) ∧ B [⇑ϕ]ψ[⇑ϕ]χ)

[↑ϕ]Bψχ↔ (Bϕ
¬[↑ϕ]ψ∧B [↑ϕ]ψ[↑ϕ]χ)∨(¬Bϕ

¬[↑ϕ]ψ∧Bϕ∧[↑ϕ]ψ[↑ϕ]χ)
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Iterated Updates

!ϕ1, !ϕ2, !ϕ3, . . . , !ϕn
always reaches a fixed-point

⇑p ⇑¬p ⇑p · · ·
Contradictory beliefs leads to oscillations

↑ϕ, ↑ϕ, . . .
Simple beliefs may never stabilize

⇑ϕ,⇑ϕ, . . .
Simple beliefs stabilize, but conditional beliefs do not

A. Baltag and S. Smets. Group Belief Dynamics under Iterated Revi-
sion: Fixed Points and Cycles of Joint Upgrades. TARK, 2009.
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r

w1

n

w2

d

w3

r

w1

d

w3

n

w2

↑(r ∨ (d ∧ ¬Bd) ∨ (¬d ∧ Bd)

r

w1

n

w2

d

w3

↑(r ∨ (d ∧ ¬Bd) ∨ (¬d ∧ Bd)
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Let ϕ be (r ∨ (B¬rq ∧ p) ∨ (B¬rp ∧ q))

rw1

qw2

pw3

M1

⇑ϕ
=⇒

rw1

pw3

qw2

M2

⇑ϕ
=⇒

rw1

qw2

pw3

M3

⇑ϕ
=⇒ · · ·

Eric Pacuit 20



Suppose that you are in the forest and happen to a see
strange-looking animal.

You consult your animal guidebook and
find a picture that seems to match the animal you see. The
guidebook says that the animal is a type of bird, so that is what
you conclude: The animal before you is a bird. After looking
more closely, you also notice that the animal is also red. So,
you also update your beliefs with that fact. Now, suppose that
an expert (whom you trust) happens to walk by and tells you
that the animal is, in fact, not a bird.
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b , r b , r

b , r b , r

M0

b , r b , r

b , r b , r

M1

↑b
b , r b , r

b , r

b , r

M2

↑r

b , r

b , r

b , r b , r

M3

↑b
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Note that in the last model,M3, the agent does not believe that
the bird is red.

The problem is that there does not seem to be
any justification for why the agent drops her belief that the bird
is red. This seems to result from the accidental fact that the
agent started by updating with the information that the animal is
a bird. In particular, note that the following sequence of updates
is not problematic:
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M0
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b , r b , r

M1
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M3
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t0

t1 t2 t3

t4 t5

↑b ↑r ↑(b ∧ r)

↑r ↑b
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R. Stalnaker. Iterated Belief Revision. Erkenntnis 70, pgs. 189 - 209,
2009.
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Two Postulates of Iterated Revision

I1 If ψ ∈ Cn({ϕ}) then (K ∗ ψ) ∗ ϕ = K ∗ ϕ.

I2 If ¬ψ ∈ Cn({ϕ}) then (K ∗ ϕ) ∗ ψ = K ∗ ψ

I Postulate I1 demands if ϕ→ ψ is a theorem (with respect
to the background theory), then first learning ψ followed by
the more specific information ϕ is equivalent to directly
learning the more specific information ϕ.

I Postulate I2 demands that first learning ϕ followed by
learning a piece of information ψ incompatible with ϕ is the
same as simply learning ψ outright. So, for example, first
learning ϕ and then ¬ϕ should result in the same belief
state as directly learning ¬ϕ.
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Stalnaker’s Counterexample to I1

UUU

UUD

UDU

UDD

DDD

DDU

DUD

DUU

I Three switches wired such that a
light is on iff all three switches are
up or all three are down.
Three independent (reliable)
observers report on the switches:
Alice says switch 1 is U, Bob says
switch 2 is D and Carla says switch
3 is U.
I receive the information that the
light is on. What should I believe?
Cautious: UUU, DDD; Bold: UUU
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Stalnaker’s Counterexample to I1

UUU

UUD

UDU

UDD

DDD

DDU

DUD

DUU

I Suppose there are two switches: L1 is
the main switch and L2 is a secondary
switch controlled by the first two lights.
(So L1 → L2, but not the converse)
Suppose I receive L1 ∧ L2, this does
not change the story.
Suppose I learn that L2. This is
irrelevant to Carla’s report, but it
means either Ann or Bob is wrong.
Now, after learning L1, the only
rational thing to believe is that all
three switches are up.
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Stalnaker’s Counterexample to I1

UUU

UUD

UDU

UDD

DDD

DDU

DUD

DUU

I So, L2 ∈ Cn({L1}) but (potentially)

(K ∗ L2) ∗ L1 , K ∗ L1.
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Stalnaker’s Counterexample to I2

I Two fair coins are flipped and placed in two boxes and two
independent and reliable observers deliver reports about
the status (heads up or tails up) of the coins in the opaque
boxes.

I Alice reports that the coin in box 1 is lying heads up, Bert
reports that the coin in box 2 is lying heads up.

I Two new independent witnesses, whose reliability trumps
that of Alice’s and Bert’s, provide additional reports on the
status of the coins. Carla reports that the coin in box 1 is
lying tails up, and Dora reports that the coin in box 2 is
lying tails up.

I Finally, Elmer, a third witness considered the most reliable
overall, reports that the coin in box 1 is lying heads up.
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Hi (Ti): the coin in box i facing heads (tails) up.

I The first revision results in the belief set K ′ = K ∗ (H1 ∧H2),
where K is the agents original set of beliefs.

I After receiving the reports, the belief set is
K ′ ∗ (T1 ∧ T2) ∗ H1.

I Since Elmers report is irrelevant to the status of the coin in
box 2, it seems natural to assume that
H1 ∧ T2 ∈ K ′ ∗ (T1 ∧ T2) ∗ H1.

I The problem: Since (T1 ∧ T2)→ ¬H1 is a theorem (given
the background theory), by I2 it follows that
K ′ ∗ (T1 ∧ T2) ∗ H1 = K ′ ∗ H1.

Yet, since H1 ∧ H2 ∈ K ′ and H1 is consistent with H2, we
must have H1 ∧ H2 ∈ K ′ ∗ H1, which yields a conflict with
the assumption that H1 ∧ T2 ∈ K ′ ∗ (T1 ∧ T2) ∗ H1.
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...[Postulate I2] directs us to take back the totality of
any information that is overturned. Specifically, if we
first receive information α, and then receive
information that conflicts with α, we should return to
the belief state we were previously in, before learning
α. But this directive is too strong. Even if the new
information conflicts with the information just received,
it need not necessarily cast doubt on all of that
information.
asdf (Stalnaker, pg. 207–208)
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Heuristic Diagnosis of Stalnaker’s Example
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A key aspect of any formal model of a (social) interactive
situation or situation of rational inquiry is the way it accounts for
the

...information about how I learn some of the things I
learn, about the sources of my information, or about
what I believe about what I believe and don’t believe. If
the story we tell in an example makes certain
information about any of these things relevant, then it
needs to be included in a proper model of the story, if
it is to play the right role in the evaluation of the
abstract principles of the model. (Stalnaker, pg. 203)

R. Stalnaker. Iterated Belief Revision. Erkentnis 70, pgs. 189 - 209,
2009.

Eric Pacuit 34



Discussion, I

A proper conceptualization of the event and report structure is
crucial (the event space must be ‘rich enough’): A theory must
be able to accommodate the conceptualization, but other than
that it hardly counts in favor of a theory that the modeler gets
this conceptualization right.
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Discussion, II

There seems to be a trade-off between a rich set of states and
event structure, and a rich theory of ‘doxastic actions’.

How should we resolve this trade-off when analyzing
counterexamples to postulates of belief changes over time?
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meta-information: information about how “trusted” or “reliable”
the sources of the information are.

procedural information: information about the underlying
protocol specifying which events (observations, messages,
actions) are available (or permitted) at any given moment.
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meta-information: information about how “trusted” or “reliable”
the sources of the information are.

This is particularly important when analyzing how an agent’s
beliefs change over an extended period of time. For example,
rather than taking a stream of contradictory incoming evidence
(i.e., the agent receives the information that p, then the
information that q, then the information that ¬p, then the
information that ¬q) at face value (and performing the
suggested belief revisions), a rational agent may consider the
stream itself as evidence that the source is not reliable
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procedural information: information about the underlying
protocol specifying which events (observations, messages,
actions) are available (or permitted) at any given moment.

A protocol describes what the agents “can” or “cannot” do (say,
observe) in a social interactive situation or rational inquiry.
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Counterexamples

Are there any genuine counterexamples or do we want to
reduce everything to misapplication? Under what
conditions we can ignore the meta-information, which is
often not specified in the description of an example (cf. the
work of Halpern and Grünwald on coarsening at random).

P. Grünwald and J. Halpern. Updating Probabilities. Journal of Artifi-
cial Intelligence Research 19, pgs. 243 - 278, 2003.
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Three Prisoner’s Problem

Three prisoners A ,B and C have been tried for murder and
their verdicts will told to them tomorrow morning. They know
only that one of them will be declared guilty and will be
executed while the others will be set free. The identity of the
condemned prisoner is revealed to the very reliable prison
guard, but not to the prisoners themselves. Prisoner A asks the
guard “Please give this letter to one of my friends — to the one
who is to be released. We both know that at least one of them
will be released”.
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Three Prisoner’s Problem

An hour later, A asks the guard “Can you tell me which of my
friends you gave the letter to? It should give me no clue
regarding my own status because, regardless of my fate, each
of my friends had an equal chance of receiving my letter.” The
guard told him that B received his letter.

Prisoner A then concluded that the probability that he will be
released is 1/2 (since the only people without a verdict are A
and C).
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Three Prisoner’s Problem

But, A thinks to himself:

Before I talked to the guard my chance of being
executed was 1 in 3. Now that he told me B has been
released, only C and I remain, so my chances of
being executed have gone from 33.33% to 50%. What
happened? I made certain not to ask for any
information relevant to my own fate...

Explain what is wrong with A ’s reasoning.

Eric Pacuit 41



Three Prisoner’s Problem

But, A thinks to himself:
Before I talked to the guard my chance of being
executed was 1 in 3. Now that he told me B has been
released, only C and I remain, so my chances of
being executed have gone from 33.33% to 50%. What
happened? I made certain not to ask for any
information relevant to my own fate...

Explain what is wrong with A ’s reasoning.

Eric Pacuit 41



Three Prisoner’s Problem

But, A thinks to himself:
Before I talked to the guard my chance of being
executed was 1 in 3. Now that he told me B has been
released, only C and I remain, so my chances of
being executed have gone from 33.33% to 50%. What
happened? I made certain not to ask for any
information relevant to my own fate...

Explain what is wrong with A ’s reasoning.

Eric Pacuit 41



A ’s reasoning

Consider the following events:

GA : “Prisoner A will be declared guilty” (we have p(GA ) = 1/3)

IB : “Prisoner B will be declared innocent” (we have p(IB) = 2/3)

We have p(IB | GA ) = 1: “If A is declared guilty then B will be
declared innocent.”

Bayes Theorem:

p(GA | IB) = p(IB | GA )
p(GA )

p(IB)
= 1 ·

1/3
2/3

= 1/2
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A ’s reasoning, corrected

But, A did not receive the information that B will be declared
innocent, but rather that “the guard said that B will be declared
innocent.” So, A should have conditioned on the event:

I′B : “The guard said that B will be declared innocent”

Given that p(I′B | GA ) is 1/2 (given that A is guilty, there is a
50-50 chance that the guard could have given the letter to B or
C). This gives us the following correct calculation:

p(GA | I′B) = p(I′B | GA )
p(GA )

p(I′B)
= 1/2 ·

1/3
1/2

= 1/3
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When does conditioning on the “naive” space give the same
results as conditioning on the “sophisticated” space?

Grünwald
and Halpern’s answer: When the CAR (coarsening at random)
condition is satisfied (and this only happens in trivial cases).
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K0 Kt = K0 ∗ ϕ=⇒

Learn that ϕ
Suppose that ϕ

p0 pt = ???=⇒
Learning experience
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Bridge Principles

Probability 1: Bel(A) iff P(A) = 1

The Lockean Thesis: Bel(A) iff P(A) > r

Decision-theoretic accounts: Bel(A) iff∑
w∈W P({w}) · u(bel A ,w) has such-and-such property

The Nihilistic proposal: “...no explication of belief is possible
within the confines of the probability model.”
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Beliefs that obey the Lockean thesis can be undermined by
new evidence that is consistent with the agent’s current beliefs.
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For each i = 1,2,3, let li be the proposition Ticket i won’t win
(and wi is the proposition that “ticket i will win”). And let us set
our threshold for Lockean belief at r = 0.6.
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(1) >

(2/3) l3 (2/3) l2 (2/3) l1

(1/3) w1 (1/3) w2 (1/3) w3

(0) ⊥
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(1) >

(2/3) l3 (2/3) l2 (1) l1

(0) w1 (1/3) w2 (1/3) w3
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(1) >

(1/2) l3 (1/2) l2 (1) l1

(0) w1 (1/2) w2 (1/2) w3

(0) ⊥
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(1) l1 ≡ >

(1/2) w2 ≡ l3 (1/2) w3 ≡ l2

(0) w1 ≡ ⊥
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Resiliency, Robust Belief, Stable Belief

B. Skyrms. Resiliency, propensities, and causal necessity. Journal of
Philosophy, 74:11, pgs. 704 - 713, 1977.

A. Baltag and S. Smets. Probabilistic Belief Revision. Synthese, 2008.

H. Leitgeb. Reducing belief simpliciter to degrees of belief. Annals of
Pure and Applied Logic, 16:4, pgs. 1338 - 1380, 2013.

R. Stalnaker. Belief revision in games: forward and backward induc-
tion. Mathematical Social Sciences, 36, pgs. 31 - 56, 1998.
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Probability

Let W be a set of states and A a σ-algebra: A ⊆ ℘(W) such that

I W , ∅ ∈ A

I if X ∈ A then W − X ∈ A
I if X ,Y ∈ A then X ∪ Y ∈ A
I if X0,X1, . . . ∈ A then

⋃
i∈N Xi ∈ A.
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Probability

P : A→ [0,1] satisfying the usual constraints
I P(W) = 1
I (finite additivity) If X1,X2 ∈ A are pairwise disjoint, then

P(X1 ∪ X2) = P(X1) + P(X2)

P(Y |X) =
P(Y∩X)

P(X) whenever P(X) > 0. So, P(Y |W) is P(Y).

I P is countably additive (σ-additive): if X1,X2, . . . ,Xn, . . . are
pairwise disjoint members of A, then
P(
⋃

n∈N Xn) =
∑

n∈N P(Xn)
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P-stabilityr

Definition. Let P be a probability measure on A over W , let
0 ≤ t < 1. For all X ∈ A:

X is P-stablet if and only if for all Y ∈ A with Y ∩ X , ∅ and
P(Y) > 0: P(X |Y) > t .

I Trivially, the empty set of P-stablet .
I If P(X) = 1, then X is P-stablet .
I There are P-stablet sets with 0 < P(X) < 1.
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I Assuming countable additivity and t ≥ 1
2 , The class of

P-stablet propositions X in A with P(X) < 1 is well-ordered
with respect to the subset relation.

I If there is a non-empty P-stabler X ∈ A with P(X) < 1, then
there is also a least such X .
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w ∈ SB(H) iff for all E ∈ A(W) with H ∩ E , ∅ and P(E) , 0:
P(H | E) ≥ t

The threshold t is determined contextually
(the “cautiousness level”)

The evidence “relevant” to H

The states may be contextually determined (by a partition
on a set W of “maximally specific worlds”)
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w ∈ SB(H) iff for all E ∈ AH(WΠ) with H ∩ E , ∅ and P(E) , 0:
P(H | E) ≥ tC

1. The threshold t is determined contextually
(the “cautiousness level”)

2. The evidence “relevant” to H

3. The states may be contextually determined (by a partition
Π on a set W of “maximally specific worlds”)
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H. Leitgeb. The Stability Theory of Belief. The Philosophical Review
123/2, 131171, 2014.

H. Leitgeb. The Humean Thesis on Belief. Proceedings of the Aris-
totelian Society of Philosophy 89(1), 143185, 2015.

R. Pettigrew. Pluralism about belief states. Proceedings of the Aris-
totelian Society 89(1):187-204, 2015.
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(1) >

(0.7) K (0.3) L

(0) ⊥
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(1) >

(0.7) K (0.65) F ∨ L (0.65) C ∨ L

(0.35) F (0.35) C (0.3) L

(0) ⊥
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(1) >

(0.54) K (1) F ∨ L (0.46) C ∨ L

(0.54) F (0) C (0.46) L

(0) ⊥
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Thus, while robust belief is stable under acquisition of new
(doxastically possible) evidence and Lockean belief is not,
robust belief is not stable under fine-graining of possibilities
while Lockean belief is.
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Leitgeb’s Solution to the Lottery Paradox
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In a context in which the agent is interested in whether ticket i
will be drawn; for example, for i = 1: Let Π be the
corresponding partition:

{{w1}, {w2, . . . ,w1,000,000}}

The resulting probability measure PΠ is given so that P is given
by P so that:

PΠ({{w1}}) =
1

1,000,000
PΠ({{w2, . . . ,w1,000,000}}) =

999,999
1,000,000
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There are two PΠ-stable sets, and one of the two possible
choices for the strongest believed proposition
BΠ

W = {{w2, . . . ,w1,000,000}}.

If BΠ
W is chosen as such, our perfectly rational agent believes of

ticket i = 1 that it will not be drawn, (and of course P1 -P3 are
satisfied).

For example, this might be a context in which a single ticket
holder—the person holding ticket 1—would be inclined to say of
his or her ticket: “I believe it wont win.”
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In a context in which the agent is interested in which ticket will
be drawn: Let Π′ be the corresponding partition that consists of
all singleton subsets of W . The probability measure PΠ is the
uniform probability on W .

The only P-stable set—and hence the only choice for the
strongest believed proposition BΠ′

W —is W itself: our perfectly
rational agent believes that some ticket will be drawn, but he or
she does not believe of any ticket that it will not win

For example, this might be a context in which a salesperson of
tickets in a lottery would be inclined to say of each ticket: “It
might win” (that is, it is not the case that I believe that it won’t
win).
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In either of the two contexts from before, the theory avoids the
absurd conclusion of the Lottery Paradox; in each context, it
preserves the closure of belief under conjunction; and in each
context, it preserves the Lockean thesis for some threshold
(r = 999,999

1,000,000 in the first case, r = 1 in the second case)-all of
this follows from P-stability and the theorem.
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In the first Π-context, the intuition is preserved that, in some
sense, one believes of ticket i that it will lose since it is so likely
to lose.

In the second Π′-context, the intuition is preserved that, in a
different sense, one should not believe of any ticket that it will
lose since the situation is symmetric with respect to tickets, as
expressed by the uniform probability measure, and of course
some ticket must win.
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Finally, by disregarding or mixing the contexts, it becomes
apparent why one might have regarded all of the premises of
the Lottery Paradox as true.

But according to the present theory, contexts should not be
disregarded or mixed: partitions Π and Π′ differ from each
other, and different partitions may lead to different beliefs, as
observed in the last section and as exemplified in the Lottery
Paradox.
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Accordingly, the thresholds in the Lockean thesis may have to
be chosen differently in different contexts, and once again, this
is what happens in the Lottery Paradox—which makes good
sense: in the second Π′-context, by uniformity, the agents
degrees of belief do not give him or her much of a hint of what
to believe. That is why the agent ought to be supercautious
about her beliefs in that
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Knowledge, Questions and Issues

J. van Benthem and S. Minica. Toward a Dynamic Logic of Questions.
Journal of Philosophical Logic, 41(4), pp. 633 - 669, 2012.

A. Baltag, R. Boddy and S. Smets. Group Knowledge in Interrog-
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Inquisitive Semantics

Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen. Inquisitive
Semantics. Oxford University Press, 2018.
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Questions

Suppose that W is a set of states.

A question is a partition on W .

QuestW = {≈Q | ≈Q is a partition on W }

Given P ⊆W , a binary question is the partition {P,W \ P}, so
s ≈P t iff either s, t ∈ P or s, t < P

Every family of questions Quest ⊆ QuestW can be
‘compressed’ into one big ‘conjunctive’ question: this is the
least refined partition that refines every question in Quest ,
≈Quest =

⋂
{≈Q | Q ∈ Quest}
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For i ∈ A, let ≈i represent i’s, total question.

“van Benthem and Minica call ≈i the agent i’s issue relation.... it
essentially captures agent i’s conceptual indistinguishability
relation, since it specifies the finest relevant world-distinctions
that agent i makes....Two worlds s ≈i t are conceptually
indistinguishable for agent i (since the answers to all i’s
questions are the same in both worlds): one can say that s and
t will correspond to the same world in agent i’s own “subjective
model”.” (Baltag et al.)
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Epistemic Issue Model

M = 〈W , {→i}i∈A, {≈i}i∈A,V〉, where

I W is a non-empty set of states
I For i ∈ A, ≈i⊆W ×W is an equivalence relation (the issue

relation)
I For i ∈ A,→i⊆W ×W is reflexive (the epistemic

alternative relation)
I V : At→ ℘(W) is a valuation funciton
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For s ∈W , s(i) = {s′ | s →i s′} is the set of epistemic
possibilities for i at s.

Open questions: The restriction ≈i|s(a)
=≈i ∩(s(a) × s(a))

represents i’s current open isues at world s.

Suppose that P ⊆W is a proposition. Then,

KiP = {s | s ∈W , s(i) ⊆ P}

CP = {s | for all t , if s(
⋃

i →i)
+t , then t ∈ P}

DP = {s | for all t , if s(
⋂

i →i)t , then t ∈ P}

QiP = {s | for all t , if s ≈i t , then t ∈ P}
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Conceptual indistinguishability implies epistemic
indistinguishability: For all i ∈ A, ≈i⊆→i .

For all ϕ, Kiϕ⇒ Qiϕ

To know is to know the answer to a question: For all i ∈ A,
→i≈i⊆→i

For all ϕ, Kiϕ⇒ KiQiϕ

Eric Pacuit 72



Selective Public Announcement

Principle of Selective Learning. When confronted with
information, agents come to know only the information that is
relevant for their issues.

For any proposition P ⊆W and i ∈ A, let Pi the strongest
i-relevant proposition entailed by P:

Pi = {s ∈W | s ≈i s′ for some s′ ∈ P}
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Selective Public Announcement

Suppose thatM = 〈W , {→i}i∈A, {≈i}i∈A,V〉 is an epistemic
issue model and P ⊆W is a proposition. A selective public
announcement !P is an action that changesM to
M

P = 〈WP , {→P
i }i∈A, {≈

P
i }i∈A,V〉, where

I WP = W
I →P

i =→i ∩ ≈
Pi

I ≈P
i =≈i

I For all p ∈ At, VP(p) = V(p).
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A. Baltag, R. Boddy and S. Smets. Group Knowledge in Interrog-
ative Epistemology. in Jaakko Hintikka on Knowledge and Game-
Theoretical Semantics, pp. 131-164.
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I. Ciardelli and F. Roelofsen. Inquisitive dynamic epistemic logic. Syn-
these, 2015.
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An issue is a non-empty, downward closed set of information
states. We say that an information state t settles an issue I in
case t ∈ I.

Let Π be the set of all issues.

An inquisitive model is a tuple 〈W , (Σi)i∈A,V〉 where
I W is a non-empty set of possible worlds
I V : W → ℘(At) is a valuation function
I Σi : W → Π where Σi(w) is an issue, satisfying:

Factivity For all w ∈W , w ∈ σi(w)
Introspection For any w, v ∈W if v ∈ σi(w), then
Σi(v) = Σi(w).

where σi(w) := Σi(w) represents the information state of
agent i in w.
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1. For all p ∈ At, p ∈ L!

2. For all ⊥ ∈ L!

3. If α1, . . . , αn ∈∈ L!, then ?{α1, . . . , αn}

4. If ϕ ∈ L◦ and ψ ∈ L◦, then ϕ ∧ ψ ∈ L◦
5. If ϕ ∈ L◦ and ψ ∈ L◦, then ϕ ∧ ψ ∈ L◦
6. If α ∈ L! and ψ ∈ L◦, then α→ ψ ∈ L◦

7. If ϕ ∈ L◦, then Eiϕ ∈ L!

8. If ϕ ∈ L◦, then Kiϕ ∈ L!
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Interrogative: ?{α1, . . . , αn}.

?p means ?{p,¬p}

Kiϕ: i knows that ϕ is true

Eiϕ: i entertains ϕ being true

Ki?p means “i knows whether p is true

Ki?Kj?p “i knows whether j knows whether p is true
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The following definition specifies recursively when a sentence
is supported by a state s. Intuitively, for declaratives being
supported amounts to being established, or true everywhere in
s, while for interrogatives it amounts to being resolved in s.
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1. M, s |= p iff p ∈ V(w) for all w ∈ s.
2. M, s |= ⊥ iff s = ∅.
3. M, s |=?{α1, . . . , αn} iff s = ∅.
4. M, s |= ϕ ∧ ψ iffM, s |= ϕ andM, s |= ψ.
5. M, s |= α→ ψ iff for any t ⊆ s, ifM, t |= α, thenM, t |= ϕ.
6. M, s |= Kiψ iff for any w ∈ s,M, σi(w) |= ϕ.
7. M, s |= Eiψ iff for any w ∈ s, for any t ∈ Σi(w),M, t |= ϕ.
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Fact 1 (Persistency of support) IfM, s |= ϕ and t ⊆ s, then
M, t |= ϕ.

Fact 2 (The empty state supports everything) For anyM and
any ϕ,M, ∅ |= ϕ

Fact 3 (Support for negation, disjunction, and polar
interrogatives)
I M, s |= ¬α iff for any non-empty t ⊆ s,M, t 6|= α

I M, s |= α ∨ β iff there are t1, t2 such that s = t1 ∪ t2, and
M, t1 |= α andM, t2 |= β

I M, s |=?α iffM, t |= α orM, t |= ¬α
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We say that a sentence ϕ entails ψ, notation ϕ |= ψ, just in
case for all modelsM and states s, ifM, s |= ϕ thenM, s |= ψ.

We say that a sentence ϕ is valid in case it is supported by all
states in all models.

We say that two sentences ϕ and ψ are equivalent, notation
ϕ ≡ ψ, just in case for all modelsM and states s,M, s |= ϕ iff
M, s |= ψ.
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ϕ is true at w inM iff ϕ is supported by {w} inM

The truth set of a sentence ϕ in a modelM, denoted |ϕ|M , is
defined as the set of worlds inM where ϕ is true:
|ϕ|M := {w ∈W | M,w |= ϕ}

The proposition [ϕ]M expressed by a sentence ϕ in a model
M is the set of all states inM that support ϕ:
[ϕ]M := {s ⊆W | M, s |= ϕ}

We have that |?p|M = |?q|M, but [?p]M , [?q]M

Fact: For any ϕ and any modelM, |ϕ|M =
⋃

[ϕ]M
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ϕ is true at w inM iff ϕ is supported by {w} inM
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⋃
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Fact (Truth and support) For any modelM, any state s and any
declarative α, the following holds:

M, s |= α iffM,w |= α for all w ∈ s
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M, s |= α→ ϕ iffM, s ∩ |α|M |= ϕ

If Ann invites Bill to the party, will he go? (p →?q)

Answers:
I Yes, if Ann invites Bill, he will go. (p → q)
I No, if Ann invites Bill, he will not go. (p → ¬q)
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Knowledge

For declaratives α, Kiα boils down to the usual definition of truth
of a modality familiar from modal logic.

For interrogatives µ, Kiµ holds when µ is resolved in σi(w),
which means that Kiµ expresses the fact that i has sufficient
information to resolve µ at w.

For instance, Ki?p is true at w just in case that σi(w) supports
either p or ¬p. That is, when i knows whether p is true.
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Entertaining

Eiϕ is true at w just in case ϕ is supported by any state
t ∈ Σi(w)

Fact. For any ϕ, Kiϕ |= Eiϕ

Fact. For any declarative α, Kiα ≡ Eiα

Wiϕ means “i wonders about ϕ: Wiϕ := ¬Kiϕ ∧ Eiϕ
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I M,w |= Kiϕ iff
⋃

Σi(w) ∈ [ϕ]M
I M,w |= Eiϕ iff Σi(w) ⊆ [ϕ]M
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Actions

1. Actions as transitions between states, or situations:

s t

a

2. Actions restrict the set of possible future histories.

Eric Pacuit 91



Actions

1. Actions as transitions between states, or situations:

s t

a

2. Actions restrict the set of possible future histories.

Eric Pacuit 91



Actions

1. Actions as transitions between states, or situations:

s t

a

2. Actions restrict the set of possible future histories.

Eric Pacuit 91



J. van Benthem, H. van Ditmarsch, J. van Eijck and J. Jaspers. Chap-
ter 6: Propositional Dynamic Logic. Logic in Action Online Course
Project, 2011.
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Converse Some actions can be undone by reversing them: the reverse of opening a
window is closing it. Other actions are much harder to undo: if you smash a piece of
china then it is sometimes hard to mend it again. So here we have a choice: do we assume
that basic actions can be undone? If we do, we need an operation for this, for taking the
converse of an action. If, in some context, we assume that undoing an action is generally
impossible we should omit the converse operation in that context.

Exercise 6.1 Suppose ˇ is used for reversing basic actions. So ǎ is the converse of action a, and
b̌ is the converse of action b. Let a; b be the sequential composition of a and b, i.e., the action that
consists of first doing a and then doing b. What is the converse of a; b?

6.3 Viewing Actions as Relations

As an exercise in abstraction, we will now view actions as binary relations on a set S of
states. The intuition behind this is as follows. Suppose we are in some state s in S. Then
performing some action a will result in a new state that is a member of some set of new
states {s1, . . . , sn}.

If this set is empty, this means that the action a has aborted in state s. If the set has a
single element s0, this means that the action a is deterministic on state s, and if the set
has two or more elements, this means that action a is non-deterministic on state s. The
general picture is:

s

s1

s2

s3

sn

Clearly, when we extend this picture to the whole set S, what emerges is a binary relation
on S, with an arrow from s to s0 (or equivalently, a pair (s, s0) in the relation) just in case
performing action a in state s may have s0 as result. Thus, we can view binary relations
on S as the interpretations of basic action symbols a.

The set of all pairs taken from S is called S ⇥ S, or S2. A binary relation on S is simply
a set of pairs taken from S, i.e., a subset of S2.

Given this abstract interpretation of basic relations, it makes sense to ask what corresponds
to the operations on actions that we encountered in Section 6.2. Let’s consider them in
turn.
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Propositional Dynamic Logic

Language: The language of propositional dynamic logic is
generated by the following grammar:

p | ¬ϕ | ϕ ∧ ψ | [α]ϕ

where p ∈ At and α is generated by the following grammar:

a | α ∪ β | α; β | α∗ | ϕ?

where a ∈ Act and ϕ is a formula.

Semantics: M = 〈W , {Ra | a ∈ P},V〉 where for each a ∈ P,
Ra ⊆W ×W and V : At→ ℘(W)

[α]ϕ means “after doing α, ϕ will be true”

〈α〉ϕ means “after doing α, ϕ may be true”
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M,w |= [α]ϕ iff for each v, if wRαv thenM, v |= ϕ

M,w |= 〈α〉ϕ iff there is a v such that wRαv andM, v |= ϕ
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Union
Rα∪β := Rα ∪ Rβ

6-12 CHAPTER 6. LOGIC AND ACTION

s

s1

s2

s3

sn

s01
s02
s03

s0m

Then performing action a [ b (the choice between a and b) in s will get you in one of the
states in {. . . , sn} [ {s01, . . . , s

0
m}. More generally, if action symbol a is interpreted as

the relation Ra, and action symbol b is interpreted as the relation Rb, then a [ b will be
interpreted as the relation Ra [ Rb (the union of the two relations).

Test A notation that is often used for the equality relation (or: identity relation is I . The
binary relation I on S is by definition the set of pairs given by:

I = {(s, s) | s 2 S}.

A test ?' is interpreted as a subset of the identity relation, namely as the following set of
pairs:

R?' = {(s, s) | s 2 S, s |= '}

From this we can see that a test does not change the state, but checks whether the state
satisfies a condition.

To see the result of combining a test with another action:
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Sequence

Rα;β := Rα ◦ Rβ

6.3. VIEWING ACTIONS AS RELATIONS 6-11

Sequence Given that action symbol a is interpreted as binary relation Ra on S, and that
action symbol b is interpreted as binary relation Rb on S, what should be the interpretation
of the action sequence a; b? Intuitively, one can move from state s to state s0 just in case
there is some intermediate state s0 with the property that a gets you from s to s0 and b gets
you from s0 to s0. This is a well-known operation on binary relations, called relational
composition. If Ra and Rb are binary relations on the same set S, then Ra � Rb is the
binary relation on S given by:

Ra � Rb = {(s, s0) | there is some s0 2 S : (s, s0) 2 Raand (s0, s
0) 2 Rb}.

If basic action symbol a is interpreted as relation Ra, and basic action symbol b is inter-
preted as relation Rb, then the sequence action a; b is interpreted as Ra � Rb. Here is a
picture:

s

s1

s2

s3

sn

s11

s12

s13

s1m

If the solid arrows interpret action symbol a and the dashed arrows interpret action sym-
bol b, then the arrows consisting of a solid part followed by a dashed part interpret the
sequence a; b.

Choice Now suppose again that we are in state s, and that performing action a will get
us in one of the states in {s1, . . . , sn}. And supposse that in that same state s, performing
action b will get us in one of the states in {s01, . . . , s

0
m}.

Eric Pacuit 97



Test
Rϕ? = {(w,w) | M,w |= ϕ}

6.4. OPERATIONS ON RELATIONS 6-13

s

s1

s2

s3

sn

t

t1

t2

t3

tm

The solid arrow interprets a test ?' that succeeds in state s but fails in state t. If the
dashed arrows interpret a basic action symbol a, then, for instance, (s, s1) will be in the
interpretation of ?'; a, but (t, t1) will not.

Since > is true in any situation, we have that ?> will get interpreted as I (the identity
relation on S). Therefore, ?>; a will always receive the same interpretation as a.

Since ? is false in any situation, we have that ?? will get interpreted as ; (the empty
relation on S). Therefore, ??; a will always receive the same interpretation as ??.

Before we handle repetition, it is useful to switch to a more gereral perspective.

6.4 Operations on Relations

Relations were introduced in Chapter 4 on predicate logic. In this chapter we view actions
as binary relations on a set S of situations. Such a binary relation is a subset of S ⇥ S,
the set of all pairs (s, t) with s and t taken from S. It makes sense to develop the general
topic of operations on binary relations. Which operations suggest themselves, and what
are the corresponding operations on actions?

In the first place, there are the usual set-theoretic operations. Binary relations are sets of
pairs, so taking unions, intersections and complements makes sense (also see Appendix
A). We have already seen that taking unions corresponds to choice between actions.

Example 6.2 The union of the relations ‘mother’ and ‘father’ is the relation ‘parent’.

Example 6.3 The intersection of the relations ✓ and ◆ is the equality relation =.
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Iteration

Rα∗ := ∪n≥0Rn
α
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Propositional Dynamic Logic

1. Axioms of propositional logic

2. [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

3. [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

4. [α; β]ϕ↔ [α][β]ϕ

5. [ψ?]ϕ↔ (ψ→ ϕ)

6. ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ

7. ϕ ∧ [α∗](ϕ→ [α]ϕ)→ [α∗]ϕ

8. Modus Ponens and Necessitation (for each program α)
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Propositional Dynamic Logic

1. Axioms of propositional logic

2. [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ)

3. [α ∪ β]ϕ↔ [α]ϕ ∧ [β]ϕ

4. [α; β]ϕ↔ [α][β]ϕ

5. [ψ?]ϕ↔ (ψ→ ϕ)

6. ϕ ∧ [α][α∗]ϕ↔ [α∗]ϕ (Fixed-Point Axiom)

7. ϕ ∧ [α∗](ϕ→ [α]ϕ)→ [α∗]ϕ (Induction Axiom)

8. Modus Ponens and Necessitation (for each program α)
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Actions and Ability

An early approach to interpret PDL as logic of actions was put
forward by Krister Segerberg.

Segerberg adds an “agency” program to the PDL language δA
where A is a formula.

K. Segerberg. Bringing it about. JPL, 1989.
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Actions and Agency

The intended meaning of the program ‘δA ’ is that the agent
“brings it about that A ’: formally, δA is the set of all paths p
such that

1. p is the computation according to some program α, and
2. α only terminates at states in which it is true that A

Interestingly, Segerberg also briefly considers a third condition:

3. p is optimal (in some sense: shortest, maximally efficient,
most convenient, etc.) in the set of computations satisfying
conditions (1) and (2).

The axioms:
1. [δA ]A
2. [δA ]B → ([δB]C → [δA ]C)
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Actions and Agency in Branching Time
Alternative accounts of agency do not include explicit
description of the actions:

t0 t1 t2 t3

· · ·

· · ·
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STIT

I Each node represents a choice point for the agent.

I A history is a maximal branch in the above tree.

I Formulas are interpreted at history moment pairs.

I At each moment there is a choice available to the agent
(partition of the histories through that moment)

I The key modality is [i stit ]ϕ which is intended to mean that
the agent i can “see to it that ϕ is true”.

• [i stit ]ϕ is true at a history moment pair provided the agent
can choose a (set of) branch(es) such that every future
history-moment pair satisfies ϕ
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STIT

We use the modality ‘^’ to mean historic possibility.

^[i stit ]ϕ: “the agent has the ability to bring about ϕ”.

Eric Pacuit 106



STIT Model
A STIT models isM = 〈T , <,Choice,V〉 where

I 〈T , <〉: T a set of moments, < a tree-like ordering on T
(irreflexive, transitive, linear-past)

I Let Hist be the set of all histories, and
Ht = {h ∈ Hist | t ∈ h} the histories through t .

I Choice : A× T → ℘(℘(H)) is a function mapping each
agent to a partition of Ht
• Choicet

i , ∅

• K , ∅ for each K ∈ Choicet
i

• For all t and mappings st : A→ ℘(Ht ) such that
st (i) ∈ Choicet

i , we have
⋂

i∈A st (i) , ∅

I V : At→ ℘(T × Hist) is a valuation function assigning to
each atomic proposition
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Many Agents
The previous model assumes there is one agent that “controls”
the transition system.

What if there is more than one agent?
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STIT Language

ϕ = p | ¬ϕ | ϕ ∧ ψ | [i stit ]ϕ | [i dstit : ϕ] | �ϕ

I M, t/h |= p iff t/h ∈ V(p)

I M, t/h |= ¬ϕ iffM, t/h 6|= ϕ

I M, t/h |= ϕ ∧ ψ iffM, t/h |= ϕ andM, t/h |= ψ

I M, t/h |= �ϕ iffM, t/h′ |= ϕ for all h′ ∈ Ht

I M, t/h |= [i stit ]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

I M, t/h |= [i dstit ]ϕ iffM, t/h′ |= ϕ for all h′ ∈ Choicet
i (h)

and there is a h′′ ∈ Ht such thatM, t/h |= ¬ϕ
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STIT: Example

The following are false: A → ^[stit ]A and
^[stit ](A ∨ B)→ ^[stit ]A ∨^[stit ]B.

h1 h2 h3

K1 K2

A
¬B

¬A
B

¬A
¬B

t

J. Horty. Agency and Deontic Logic. 2001.
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STIT: Axiomatics
I S5 for �: �(ϕ→ ψ)→ (�ϕ→ �ψ), �ϕ→ ϕ, �ϕ→ ��ϕ,
¬�ϕ→ �¬�ϕ

I S5 for [i stit ]: [i stit ](ϕ→ ψ)→ ([i stit ]ϕ→ [i stit ]ψ),
[i stit ]ϕ→ ϕ, [i stit ]ϕ→ [i stit ][i stit ]ϕ,
¬[i stit ]ϕ→ [i stit ]¬[i stit ]ϕ

I �ϕ→ [i stit ]ϕ

I (
∧

i∈A^[i stit ]ϕi)→ ^(
∧

i∈A[i stit ]ϕi)

I Modus Ponens and Necessitation for �

M. Xu. Axioms for deliberative STIT. Journal of Philosophical Logic,
Volume 27, pp. 505 - 552, 1998.

P. Balbiani, A. Herzig and N. Troquard. Alternative axiomatics and
complexity of deliberative STIT theories. Journal of Philosophical
Logic, 37:4, pp. 387 - 406, 2008.
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Recap: Logics of Action and Ability

I Fϕ: ϕ is true at some moment in the future

I ∃Fϕ: there is a history where ϕ is true some moment in
the future

I [α]ϕ: after doing action α, ϕ is true

I [δϕ]ψ: after bringing about ϕ, ψ is true

I [i stit ]ϕ: the agent can “see to it that” ϕ is true

I ^[i stit ]ϕ: the agent has the ability to bring about ϕ
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Epistemizing logics of action and ability
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Knowledge, action, abilities

A. Herzig. Logics of knowledge and action: critical analysis and chal-
lenges. Autonomous Agent and Multi-Agent Systems, 2014.

J. Broeresen, A. Herzig and N. Troquard. What groups do, can do
and know they can do: An analysis in normal modal logics. Journal of
Applied and Non-Classical Logics, 19:3, pgs. 261 - 289, 2009.

W. van der Hoek and M. Wooldridge. Cooperation, knowledge and
time: Alternating-time temporal epistemic logic and its applications.
Studia Logica, 75, pgs. 125 - 157, 2003.
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Epistemic stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,V〉
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m1

m2 m3

A

h1

¬A

h2

¬A

h3

A

h4

m/h denotes (m,h) with
m ∈ h is called an index

Hm = {h | m ∈ h}
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Epistemic stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
For α ∈ Agent , Choicem

α is a
partition on Hm

Choicem
α (h) is the particular

action at m that contains h
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m1 K1 K2

m2 K3 K4
m3K5 K6
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h1

¬A

h2

¬A

h3

A

h4

V assigns sets of indices to
atomic propositions.

m2/h1 |= A m2/h2 6|= A
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Epistemic stit model

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,V〉

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4
∼α is an (equivalence) rela-
tion on indices

m/h ∼α m′/h′: everything
α knows at m/h is true at
m′/h′, α cannot distinguish
m/h and m′/h′, . . .
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m
K1 K2

m2K3 K4

I M,m/h |= �A if and only ifM,m/h′ |= A for all h′ ∈ Hm,

M,m/h |= [α stit: A ] if and only if Choicem
α (h) ⊆ |A |m

M
,

M,m/h |= KαA if and only if, for all m′/h′, if m/h ∼α m′/h′,
thenM,m′/h′ |= A

Eric Pacuit 116



m
K1 K2

m2K3 K4

I M,m/h |= �A if and only ifM,m/h′ |= A for all h′ ∈ Hm,

I M,m/h |= [α stit: A ] if and only if Choicem
α (h) ⊆ |A |m

M
,

M,m/h |= KαA if and only if, for all m′/h′, if m/h ∼α m′/h′,
thenM,m′/h′ |= A

Eric Pacuit 116



m
K1 K2

m2K3 K4

I M,m/h |= �A if and only ifM,m/h′ |= A for all h′ ∈ Hm,

I M,m/h |= [α stit: A ] if and only if Choicem
α (h) ⊆ |A |m

M
,

I M,m/h |= KαA if and only if, for all m′/h′, if m/h ∼α m′/h′,
thenM,m′/h′ |= A

Eric Pacuit 116



Action labels

Let Type = {τ1, τ2, . . . , τn} be a set of action types—general
kinds of action, as opposed to the concrete action tokens.

An action type τ is interpreted as a partial function mapping
each agent α and moment m into the particular action token
[τ]mα that results when τ is executed by α at m (so,
[τ]mα ∈ Choicem

α )
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Labeled stit frames

〈Tree, <,Agent ,Choice , {∼α}α∈Agent ,Type ,Label,V〉,

Label maps each action token K ∈ Choicem
α to a particular

action type Label(K) ∈ Type .

1. If K ∈ Choicem
α , then [Label(K)]mα = K ,

2. If τ ∈ Type and [τ]mα is defined, then Label([τ]mα ) = τ.

Typem
α = {Label(K) : K ∈ Choicem

α }

Typem
α (h) = Label(Choicem

α (h))
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Frame properties

I If m/h ∼α m′/h′, then m/h′′ ∼α m′/h′′′ for each h′′ ∈ Hm

and h′′′ ∈ Hm′ .

I For all m/h, Knowα(m/h) ⊆ Hm.

I If m/h ∼α m′/h′, then Typem
α = Typem′

α .

I If m/h ∼α m′/h′, then Typem
α (h) = Typem′

α (h′).
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kstit

I M,m/h |= [α kstit: A ] if and only if [Typem
α (h)]m

′

α ⊆ |A |m
′

M
for

all m′/h′ such that m′/h′ ∼α m/h.
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kstit

m
K1 K2

m2K3 K4

τ

I M,m/h |= [α kstit: A ] if and only if [Typem
α (h)]m

′

α ⊆ |A |m
′

M
for

all m′/h′ such that m′/h′ ∼α m/h.

Eric Pacuit 120



Causal vs. epistemic ability

^[α stit: A ]

Kα^[α stit: A ]

^Kα[α stit: A ]

^[α kstit: A ]
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Causal vs. epistemic ability

m1 K1 K2

m2 K3 K4
m3K5 K6

A

h1

¬A

h2

¬A

h3

A

h4

^[α stit: A ] is settled true at m2
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Ex ante vs. ex interim knowledge

I M,m/h |= KαA if and only if, for all m′/h′, if m/h ∼α m′/h′,
thenM,m′/h′ |= A

I M,m/h |= Kact
α A if and only if, for all m′/h′, if

m/h ∼α m′/h′ and h′ ∈ [Typem
α (h)]m

′

α ,M,m′/h′ |= A
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Discussion

I Language/validities

�A ⊃ [α stit: A ]
Kα�A ⊃ [α kstit: A ]
[α kstit: A ] ≡ Kact

α [α stit: A ]
. . .

I What do the agents know vs. What do the agents know
given what they are doing.

I Equivalence between labeled stit models (cf. Thompson
transformations specifying when two imperfect information
games reduce to the same Normal form)
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