Introduction to Logics of Knowledge and Belief

Eric Pacuit

University of Maryland pacuit.org
epacuit@umd.edu
May 6, 2019

Knowledge, Questions and Issues

J. van Benthem and S. Minica. Toward a Dynamic Logic of Questions. Journal of Philosophical Logic, 41(4), pp. 633-669, 2012.
A. Baltag, R. Boddy and S. Smets. Group Knowledge in Interrogative Epistemology. in Jaakko Hintikka on Knowledge and GameTheoretical Semantics, pp. 131-164.

Questions

Suppose that W is a set of states.
A question is a partition on W.

Questions

Suppose that W is a set of states.
A question is a partition on W.

Quest $_{W}=\left\{\approx_{Q} \mid \approx_{Q}\right.$ is a partition on $\left.W\right\}$

Given $P \subseteq W$, a binary question is the partition $\{P, W \backslash P\}$, so $s \approx^{P} t$ iff either $s, t \in P$ or $s, t \notin P$

Questions

Suppose that W is a set of states.
A question is a partition on W.

Quest $_{W}=\left\{\approx_{Q} \mid \approx_{Q}\right.$ is a partition on $\left.W\right\}$

Given $P \subseteq W$, a binary question is the partition $\{P, W \backslash P\}$, so $s \approx^{P} t$ iff either $s, t \in P$ or $s, t \notin P$

Every family of questions Quest \subseteq Questw can be 'compressed' into one big 'conjunctive' question: this is the least refined partition that refines every question in Quest, $\approx_{\text {Quest }}=\bigcap\left\{\approx_{Q} \mid Q \in\right.$ Quest $\}$

For $i \in \mathcal{A}$, let \approx_{i} represent i 's, total question.
"van Benthem and Minica call \approx_{i} the agent i 's issue relation.... it essentially captures agent i's conceptual indistinguishability relation, since it specifies the finest relevant world-distinctions that agent i makes....Two worlds $s \approx_{i} t$ are conceptually indistinguishable for agent i (since the answers to all i's questions are the same in both worlds): one can say that s and t will correspond to the same world in agent i's own "subjective model"."
(Baltag et al.)

Epistemic Issue Model

$\mathcal{M}=\left\langle W,\left\{\rightarrow_{i}\right\}_{i \in \mathcal{A}},\left\{\approx_{i}\right\}_{i \in \mathcal{A}}, V\right\rangle$, where

- W is a non-empty set of states
- For $i \in \mathcal{A}, \approx_{i} \subseteq W \times W$ is an equivalence relation (the issue relation)
- For $i \in \mathcal{A}, \rightarrow_{i} \subseteq W \times W$ is reflexive (the epistemic alternative relation)
- $V:$ At $\rightarrow \wp(W)$ is a valuation funciton

For $s \in W, s(i)=\left\{s^{\prime} \mid s \rightarrow_{i} s^{\prime}\right\}$ is the set of epistemic possibilities for i at s.

Open questions: The restriction $\approx_{i_{s(a)}}=\approx_{i} \cap(s(a) \times s(a))$ represents i 's current open isues at world s.

For $s \in W, s(i)=\left\{s^{\prime} \mid s \rightarrow_{i} s^{\prime}\right\}$ is the set of epistemic possibilities for i at s.

Open questions: The restriction $\approx_{i_{s(a)}}=\approx_{i} \cap(s(a) \times s(a))$ represents i 's current open isues at world s.

Suppose that $P \subseteq W$ is a proposition. Then,
$K_{i} P=\{s \mid s \in W, s(i) \subseteq P\}$
$C P=\left\{s \mid\right.$ for all t, if $s\left(\bigcup_{i} \rightarrow_{i}\right)^{+} t$, then $\left.t \in P\right\}$
$D P=\left\{s \mid\right.$ for all t, if $s\left(\bigcap_{i} \rightarrow_{i}\right) t$, then $\left.t \in P\right\}$
$Q_{i} P=\left\{s \mid\right.$ for all t, if $s \approx_{i} t$, then $\left.t \in P\right\}$

Conceptual indistinguishability implies epistemic indistinguishability: For all $i \in \mathcal{A}, \approx_{i} \subseteq \rightarrow$.
For all $\varphi, K_{i} \varphi \Rightarrow Q_{i} \varphi$

To know is to know the answer to a question: For all $i \in \mathcal{A}$, $\rightarrow i \approx i \subseteq \rightarrow i$
For all $\varphi, K_{i} \varphi \Rightarrow K_{i} Q_{i} \varphi$

Selective Public Announcement

Principle of Selective Learning. When confronted with information, agents come to know only the information that is relevant for their issues.

For any proposition $P \subseteq W$ and $i \in \mathcal{A}$, let P_{i} the strongest i-relevant proposition entailed by P:

$$
P_{i}=\left\{s \in W \mid s \approx_{i} s^{\prime} \text { for some } s^{\prime} \in P\right\}
$$

Selective Public Announcement

Suppose that $\mathcal{M}=\left\langle W,\left\{\rightarrow_{i}\right\}_{i \in \mathcal{A}},\left\{\approx_{i}\right\}_{i \in \mathcal{F}}, V\right\rangle$ is an epistemic issue model and $P \subseteq W$ is a proposition. A selective public announcement ! P is an action that changes \mathcal{M} to
$\mathcal{M}^{P}=\left\langle W^{P},\left\{\rightarrow_{i}^{P}\right\}_{i \in \mathcal{A}},\left\{\approx_{i}^{P}\right\}_{i \in \mathcal{A}}, V\right\rangle$, where

- $W^{P}=W$
- $\rightarrow_{i}^{P}=\rightarrow_{i} \cap \approx_{i}$
- $\approx_{i}^{P}=\approx_{i}$
- For all $p \in$ At, $V^{P}(p)=V(p)$.

A. Baltag, R. Boddy and S. Smets. Group Knowledge in Interrogative Epistemology. in Jaakko Hintikka on Knowledge and GameTheoretical Semantics, pp. 131-164.
I. Ciardelli and F. Roelofsen. Inquisitive dynamic epistemic logic. Synthese, 2015.
I. Ciardelli. Modalities in the realm of questions: axiomatizing inquisitive epistemic logic. Advances in Modal Logic, 2014.

Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelofsen. Inquisitive Semantics. Oxford University Press, 2018.

An issue is a non-empty, downward closed set of information states. We say that an information state t settles an issue I in case $t \in I$.

Let Π be the set of all issues.

An issue is a non-empty, downward closed set of information states. We say that an information state t settles an issue I in case $t \in I$.

Let Π be the set of all issues.

An inquisitive model is a tuple $\left\langle W,\left(\Sigma_{i}\right)_{i \in \mathcal{A}}, V\right\rangle$ where

- W is a non-empty set of possible worlds
- $V: W \rightarrow \wp(A t)$ is a valuation function
- $\Sigma_{i}: W \rightarrow \Pi$ where $\Sigma_{i}(w)$ is an issue, satisfying:

Factivity For all $w \in W, w \in \sigma_{i}(w)$
Introspection For any $w, v \in W$ if $v \in \sigma_{i}(w)$, then

$$
\Sigma_{i}(v)=\Sigma_{i}(w) .
$$

where $\sigma_{i}(w):=\Sigma_{i}(w)$ represents the information state of agent i in w.

Fig. 1 Issues over the state $\{w 1, w 2, w 3, w 4\}$

1. For all $p \in \operatorname{At}, p \in \mathcal{L}_{!}$
2. For all $\perp \in \mathcal{L}_{!}$
3. If $\alpha_{1}, \ldots, \alpha_{n} \in \mathcal{L}_{!}$, then $?\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \in \mathcal{L}$?
4. If $\varphi \in \mathcal{L}_{\circ}$ and $\psi \in \mathcal{L}_{\circ}$, then $\varphi \wedge \psi \in \mathcal{L}_{\circ}$
5. If $\alpha \in \mathcal{L}_{!}$and $\psi \in \mathcal{L}_{\circ}$, then $\alpha \rightarrow \psi \in \mathcal{L}_{\circ}$
6. If $\varphi \in \mathcal{L}_{0}$, then $E_{i} \varphi \in \mathcal{L}_{!}$
7. If $\varphi \in \mathcal{L}_{0}$, then $K_{i} \varphi \in \mathcal{L}_{!}$

Interrogative: ? $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$.
?p means ? $\{p, \neg p\}$
$K_{i} \varphi$: i knows that φ is true
$E_{i} \varphi$: i entertains φ being true
K_{i} ?p means " i knows whether p is true
$K_{i} ? K_{j}$? p " i knows whether j knows whether p is true

The following definition specifies recursively when a sentence is supported by a state s. Intuitively, for declaratives being supported amounts to being established, or true everywhere in s, while for interrogatives it amounts to being resolved in s.

1. $\mathcal{M}, s \models p$ iff $p \in V(w)$ for all $w \in s$.
2. $\mathcal{M}, s \models \perp$ iff $s=\emptyset$.
3. $\mathcal{M}, s \models ?\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ iff $\mathcal{M}, s \models \alpha_{i}$ for some $1 \leq i \leq n$.
4. $\mathcal{M}, s \models \varphi \wedge \psi$ iff $\mathcal{M}, s \models \varphi$ and $\mathcal{M}, s \models \psi$.
5. $\mathcal{M}, s \models \alpha \rightarrow \varphi$ iff for any $t \subseteq s$, if $\mathcal{M}, t \models \alpha$, then $\mathcal{M}, t \models \varphi$.
6. $\mathcal{M}, s \models K_{i} \varphi$ iff for any $w \in s, \mathcal{M}, \sigma_{i}(w) \models \varphi$.
7. $\mathcal{M}, s \models E_{i} \varphi$ iff for any $w \in s$, for any $t \in \Sigma_{i}(w), \mathcal{M}, t \models \varphi$.

Fact 1 (Persistency of support) If $\mathcal{M}, s \models \varphi$ and $t \subseteq s$, then $\mathcal{M}, t \models \varphi$.

Fact 2 (The empty state supports everything) For any \mathcal{M} and any $\varphi, \mathcal{M}, \emptyset \models \varphi$

Fact 3 (Support for negation, disjunction, and polar interrogatives)

- $\mathcal{M}, s \models \neg \alpha$ iff for any non-empty $t \subseteq s, \mathcal{M}, t \not \models \alpha$
- $\mathcal{M}, s \models \alpha \vee \beta$ iff there are t_{1}, t_{2} such that $s=t_{1} \cup t_{2}$, and $\mathcal{M}, t_{1} \models \alpha$ and $\mathcal{M}, t_{2} \models \beta$
- $\mathcal{M}, s \models$? α iff $\mathcal{M}, t \models \alpha$ or $\mathcal{M}, t \models \neg \alpha$

We say that a sentence φ entails ψ, notation $\varphi \models \psi$, just in case for all models \mathcal{M} and states s, if $\mathcal{M}, s \models \varphi$ then $\mathcal{M}, s \models \psi$.

We say that a sentence φ is valid in case it is supported by all states in all models.

We say that two sentences φ and ψ are equivalent, notation $\varphi \equiv \psi$, just in case for all models \mathcal{M} and states $s, \mathcal{M}, s \models \varphi$ iff $\mathcal{M}, s \models \psi$.
φ is true at w in \mathcal{M} iff φ is supported by $\{w\}$ in \mathcal{M}

The truth set of a sentence φ in a model \mathcal{M}, denoted $|\varphi|_{\mathcal{M}}$, is defined as the set of worlds in \mathcal{M} where φ is true:
$|\varphi|_{\mathcal{M}}:=\{w \in W \mid \mathcal{M}, w \models \varphi\}$

The proposition $[\varphi]_{\mathcal{M}}$ expressed by a sentence φ in a model \mathcal{M} is the set of all states in \mathcal{M} that support φ :
$[\varphi]_{\mathcal{M}}:=\{s \subseteq W \mid \mathcal{M}, s \models \varphi\}$
φ is true at w in \mathcal{M} iff φ is supported by $\{w\}$ in \mathcal{M}

The truth set of a sentence φ in a model \mathcal{M}, denoted $|\varphi|_{\mathcal{M}}$, is defined as the set of worlds in \mathcal{M} where φ is true:
$|\varphi|_{\mathcal{M}}:=\{w \in W \mid \mathcal{M}, w \models \varphi\}$

The proposition $[\varphi]_{\mathcal{M}}$ expressed by a sentence φ in a model \mathcal{M} is the set of all states in \mathcal{M} that support φ :
$[\varphi]_{\mathcal{M}}:=\{s \subseteq W \mid \mathcal{M}, s \models \varphi\}$

We have that $|? p|_{\mathcal{M}}=|? q|_{\mathcal{M}}$, but $[? p]_{\mathcal{M}} \neq[? q]_{\mathcal{M}}$

Fact: For any φ and any model $\mathcal{M},|\varphi|_{\mathcal{M}}=\bigcup[\varphi]_{\mathcal{M}}$

Fact (Truth and support) For any model \mathcal{M}, any state s and any declarative α, the following holds:

$$
\mathcal{M}, \boldsymbol{s} \models \alpha \text { iff } \mathcal{M}, w \models \alpha \text { for all } w \in s
$$

$\mathcal{M}, s \models \alpha \rightarrow \varphi$ iff $\mathcal{M}, s \cap|\alpha|_{\mathcal{M}} \models \varphi$

$$
\mathcal{M}, s \models \alpha \rightarrow \varphi \text { iff } \mathcal{M}, s \cap|\alpha|_{\mathcal{M}} \models \varphi
$$

If Ann invites Bill to the party, will he go? $(p \rightarrow ? q)$

Answers:

- Yes, if Ann invites Bill, he will go. ($p \rightarrow q$)
- No, if Ann invites Bill, he will not go. $(p \rightarrow \neg q)$

Knowledge

For declaratives $\alpha, K_{i} \alpha$ boils down to the usual definition of truth of a modality familiar from modal logic.

For interrogatives $\mu, K_{i} \mu$ holds when μ is resolved in $\sigma_{i}(w)$, which means that $K_{i} \mu$ expresses the fact that i has sufficient information to resolve μ at w.

For instance, K_{i} ? p is true at w just in case that $\sigma_{i}(w)$ supports either p or $\neg p$. That is, when i knows whether p is true.

Entertaining

$E_{i} \varphi$ is true at w just in case φ is supported by any state $t \in \Sigma_{i}(w)$

Fact. For any $\varphi, K_{i} \varphi \models E_{i} \varphi$
Fact. For any declarative $\alpha, K_{i} \alpha \equiv E_{i} \alpha$
$W_{i} \varphi$ means " i wonders about $\varphi: W_{i} \varphi:=\neg K_{i} \varphi \wedge E_{i} \varphi$

- $\mathcal{M}, w \models K_{i} \varphi$ iff $\cup \Sigma_{i}(w) \in[\varphi]_{\mathcal{M}}$
- $\mathcal{M}, w \models E_{i} \varphi$ iff $\Sigma_{i}(w) \subseteq[\varphi]_{\mathcal{M}}$

Public Announcement

Given $\mathcal{M}=\left\langle W,\left(\Sigma_{i}\right)_{i \in \mathcal{A}}, V\right\rangle$, the public announcement of φ transform \mathcal{M} to $\mathcal{M}^{\varphi}=\left\langle\boldsymbol{W}^{\varphi},\left(\Sigma_{i}^{\varphi}\right)_{i \in \mathcal{A}}, V^{\varphi}\right\rangle$, where

- $\boldsymbol{W}^{\varphi}=W \cap|\varphi|_{\mathcal{M}}$
- $V^{\varphi}=V_{\mid W^{\varphi}}$
- For all $w \in W^{\varphi}, \Sigma_{i}^{\varphi}(w)=\Sigma_{i}(w) \cap[\varphi]_{\mathcal{M}}$

For any $\varphi, \sigma_{i}^{\varphi}(w)=\sigma_{i}(w) \cap|\varphi|_{\mathcal{M}}$

Fig. 2 The effects of a series of simple announcements on a state
Y. Wang. Beyond knowing that: A new generation of epistemic logics. 2016.

We have been studying "knowing that" expressions, but we often use the verb "know" with an embedded question such as:

- I know whether the claim is true.
- I know what your password is.
- I know how to swim.
- I know why he was late.
- I know who proved this theorem.
- I know where she has been.

Knowing Whether

$K w_{i} \varphi$ means that i knows whether φ is true.
$K w_{i} \varphi \leftrightarrow K w_{i} \neg \varphi$ is valid
$K w_{i} K w_{j} \varphi \rightarrow K w_{i} \varphi$ is not valid

Knowing Whether

$K w_{i} \varphi$ means that i knows whether φ is true.
$K w_{i} \varphi \leftrightarrow K w_{i} \neg \varphi$ is valid
$K w_{i} K w_{j} \varphi \rightarrow K w_{i} \varphi$ is not valid
$\Delta \varphi:=\square \varphi \vee \square \neg \varphi$ means that φ is not contingent
S. Hart, A. Heifetz, and D. Samet. Knowing whether, knowing that, and the cardinality of state spaces. Journal of Economic Theory, 70(1):249 - 256, 1996.
L. Humberstone. The logic of non-contingency. Notre Dame Journal of Formal Logic, 36(2):214-229, 1995.
S. Kuhn. Minimal non-contingency logic. Notre Dame Journal of Formal Logic, 36(2):230-234, 1995..
H. van Ditmarsch, J. Fan and Y. Wang. Contingency and knowing whether. Review of Symbolic Logic 8(1):75-107, 2015.

NCL Logic

$$
\varphi::=\mathrm{\top}|p| \neg \varphi|(\varphi \wedge \varphi)| \Delta_{i} \varphi
$$

$\mathcal{M}=\left\langle W,\left(R_{i}\right)_{i \in \mathcal{A}}, V\right\rangle$ where
$\mathcal{M}, w \models \Delta_{i} \varphi$ iff for all v_{1}, v_{2}, if $w R_{i} v_{1}$ and $w R_{i} v_{2}$, then $\mathcal{M}, v_{1} \models \varphi$ iff $\mathcal{M}, v_{2} \models \varphi$

\mathcal{M}_{1}, s and $\mathcal{M}_{2}, s^{\prime}$ satisfy the NCL formulas, but can be distinguished by formulas of modal logic.

- $\neg \Delta_{i} \psi \rightarrow\left(\square_{i} \varphi \leftrightarrow\left(\Delta_{i} \varphi \wedge \Delta_{i}(\psi \rightarrow \varphi)\right)\right)$ is valid
- $\neg \Delta_{i} \psi \rightarrow\left(\square_{i} \varphi \leftrightarrow\left(\Delta_{i} \varphi \wedge \Delta_{i}(\psi \rightarrow \varphi)\right)\right)$ is valid
- It is impossible to use NCL formulas to capture frame properties.
- $\neg \Delta_{i} \psi \rightarrow\left(\square_{i} \varphi \leftrightarrow\left(\Delta_{i} \varphi \wedge \Delta_{i}(\psi \rightarrow \varphi)\right)\right)$ is valid
- It is impossible to use NCL formulas to capture frame properties.
- NCL is not normal, e.g., $\left(\Delta_{i}(\varphi \rightarrow \psi) \wedge \Delta_{i} \varphi\right) \rightarrow \Delta_{i} \psi$ is not valid.
- $\neg \Delta_{i} \psi \rightarrow\left(\square_{i} \varphi \leftrightarrow\left(\Delta_{i} \varphi \wedge \Delta_{i}(\psi \rightarrow \varphi)\right)\right)$ is valid
- It is impossible to use NCL formulas to capture frame properties.
- NCL is not normal, e.g., $\left(\Delta_{i}(\varphi \rightarrow \psi) \wedge \Delta_{i} \varphi\right) \rightarrow \Delta_{i} \psi$ is not valid.
- NCL is not strictly weaker than modal logic, $\Delta_{i} \varphi \leftrightarrow \Delta_{i} \neg \varphi$ is valid.
- all instances of tautologies
- $\left(\Delta_{i}(q \rightarrow p) \wedge \Delta_{i}(\neg q \rightarrow p)\right) \rightarrow \Delta_{i} p$
- $\left(\Delta_{i} p \rightarrow\left(\Delta_{i}(p \rightarrow q) \vee \Delta_{i}(\neg p \rightarrow q)\right)\right.$
- $\triangle_{i} p \leftrightarrow \Delta_{i} \neg p$
- from $\varphi, \varphi \rightarrow \psi$, infer ψ
- from φ, infer $\Delta_{i} \varphi$
- from φ, infer $\varphi[p / \psi]$
- from $\varphi \leftrightarrow \psi$, infer $\Delta_{i} \varphi \leftrightarrow \Delta_{i} \psi$

Theorem. (Fan et al (2015)). The above axioms are sound and strongly complete over the class of arbitrary frames.

Public announcement logic is defined as usual.

$$
\begin{aligned}
& {[\varphi] \Delta_{i} \psi \leftrightarrow(\varphi}\left.\rightarrow\left(\Delta_{i}[\varphi] \psi \vee \Delta_{i}[\varphi] \neg \psi\right)\right) \\
& {[? \varphi] \psi \leftrightarrow([\varphi] \psi \wedge[\neg \varphi] \psi) }
\end{aligned}
$$

Knowing what

i knows what the value of c
$\exists x K_{i}(\mathrm{C}=x)$

Knowing what

$$
\varphi::=\mathrm{\top}|p| \neg \varphi|(\varphi \wedge \varphi)| K_{i} \varphi \mid K v_{i} c
$$

where $p \in$ At and $c \in \mathbf{C}$ (a set of constant symbols)
$\mathcal{M}=\left\langle W, D,\left(R_{i}\right)_{i \in \mathcal{F}}, V, V_{C}\right\rangle$
where $W \neq \emptyset$, each R_{i} is a relation on $W, V: A t \rightarrow \wp(W), D$ is the constant domain and $V_{C}: \mathbf{C} \times W \rightarrow D$ assigns to each $c \in \mathbf{C}$ and world w a value $d \in D$.
$\mathcal{M}, w \models K v_{i} c$ iff for any v_{1}, v_{2}, if $w R_{i} v_{1}$ and $w R_{i} v_{2}$, then $v_{C}\left(v_{1}, c\right)=v_{C}\left(c, v_{2}\right)$

$K_{i} K v_{j} c \wedge \neg K v_{j} c \quad$ vs. $\quad K_{i} K_{j} p \wedge \neg K_{i} p$

$$
K_{i} K v_{j} c \wedge \neg K v_{j} c \quad \text { vs. } \quad K_{i} K_{j} p \wedge \neg K_{i} p
$$

$$
\varphi::=\mathrm{T}|\rho| \neg \varphi|(\varphi \wedge \varphi)| K_{i} \varphi\left|K v_{i} c\right|[\varphi] \varphi
$$

$\left(\langle p\rangle K v_{i} c \wedge\langle q\rangle K v_{i} c\right) \rightarrow\langle p \vee c\rangle K v_{i} c$ is not derivable is S 5 with recursion axioms.
Y. Wang and J. Fan. Knowing that, knowing what, and public communication: Public announcement logic with Kv operators. In: Proceedings of IJCAI?13, pp 1139-1146, 2013.
A. Baltag. To Know is to Know the Value of a Variable. AiML, 2016.
Y. Wang. A New Modal Framework for Epistemic Logic. TARK 2017.

Know how

J. Fantl. Knowing-how and knowing-that. Philosophy Compass, 3 (2008), 451470.
M.P. Singh. Know-how. In Foundations of Rational Agency (1999), M. Woodridge and A. Rao, Eds., pp. 105132.

Actions

1. Actions as transitions between states, or situations:

Actions

1. Actions as transitions between states, or situations:

Actions

1. Actions as transitions between states, or situations:

2. Actions restrict the set of possible future histories.

J. van Benthem, H. van Ditmarsch, J. van Eijck and J. Jaspers. Chapter 6: Propositional Dynamic Logic. Logic in Action Online Course Project, 2011.

Propositional Dynamic Logic

Language: The language of propositional dynamic logic is generated by the following grammar:

$$
p|\neg \varphi| \varphi \wedge \psi \mid[\alpha] \varphi
$$

where $p \in \operatorname{At}$ and α is generated by the following grammar:

$$
a|\alpha \cup \beta| \alpha ; \beta\left|\alpha^{*}\right| \varphi ?
$$

where $a \in \operatorname{Act}$ and φ is a formula.

Propositional Dynamic Logic

Language: The language of propositional dynamic logic is generated by the following grammar:

$$
p|\neg \varphi| \varphi \wedge \psi \mid[\alpha] \varphi
$$

where $p \in \mathrm{At}$ and α is generated by the following grammar:

$$
a|\alpha \cup \beta| \alpha ; \beta\left|\alpha^{*}\right| \varphi ?
$$

where $a \in \operatorname{Act}$ and φ is a formula.
Semantics: $\mathcal{M}=\left\langle W,\left\{R_{a} \mid a \in P\right\}, V\right\rangle$ where for each $a \in P$, $R_{a} \subseteq W \times W$ and $V: A t \rightarrow \wp(W)$

Propositional Dynamic Logic

Language: The language of propositional dynamic logic is generated by the following grammar:

$$
p|\neg \varphi| \varphi \wedge \psi \mid[\alpha] \varphi
$$

where $p \in \mathrm{At}$ and α is generated by the following grammar:

$$
a|\alpha \cup \beta| \alpha ; \beta\left|\alpha^{*}\right| \varphi ?
$$

where $a \in \operatorname{Act}$ and φ is a formula.
Semantics: $\mathcal{M}=\left\langle W,\left\{R_{a} \mid a \in P\right\}, V\right\rangle$ where for each $a \in P$, $R_{a} \subseteq W \times W$ and $V: A t \rightarrow \wp(W)$
$[\alpha] \varphi$ means "after doing α, φ will be true"
$\langle\alpha\rangle \varphi$ means "after doing α, φ may be true"

$\mathcal{M}, w \models[\alpha] \varphi$ iff for each v, if $w R_{\alpha} v$ then $\mathcal{M}, v \models \varphi$

$\mathcal{M}, w \models\langle\alpha\rangle \varphi$ iff there is a v such that $w R_{\alpha} v$ and $\mathcal{M}, v \models \varphi$

Union

$$
R_{\alpha \cup \beta}:=R_{\alpha} \cup R_{\beta}
$$

Sequence

$$
R_{\alpha ; \beta}:=R_{\alpha} \circ R_{\beta}
$$

Test

$$
R_{\varphi ?}=\{(w, w) \mid \mathcal{M}, w \models \varphi\}
$$

Iteration

$$
R_{\alpha^{*}}:=\cup_{n \geq 0} R_{\alpha}^{n}
$$

Propositional Dynamic Logic

1. Axioms of propositional logic
2. $[\alpha](\varphi \rightarrow \psi) \rightarrow([\alpha] \varphi \rightarrow[\alpha] \psi)$
3. $[\alpha \cup \beta] \varphi \leftrightarrow[\alpha] \varphi \wedge[\beta] \varphi$
4. $[\alpha ; \beta] \varphi \leftrightarrow[\alpha][\beta] \varphi$
5. $[\psi ?] \varphi \leftrightarrow(\psi \rightarrow \varphi)$
6. $\varphi \wedge[\alpha]\left[\alpha^{*}\right] \varphi \leftrightarrow\left[\alpha^{*}\right] \varphi$
7. $\varphi \wedge\left[\alpha^{*}\right](\varphi \rightarrow[\alpha] \varphi) \rightarrow\left[\alpha^{*}\right] \varphi$
8. Modus Ponens and Necessitation (for each program α)

Propositional Dynamic Logic

1. Axioms of propositional logic
2. $[\alpha](\varphi \rightarrow \psi) \rightarrow([\alpha] \varphi \rightarrow[\alpha] \psi)$
3. $[\alpha \cup \beta] \varphi \leftrightarrow[\alpha] \varphi \wedge[\beta] \varphi$
4. $[\alpha ; \beta] \varphi \leftrightarrow[\alpha][\beta] \varphi$
5. $[\psi ?] \varphi \leftrightarrow(\psi \rightarrow \varphi)$
6. $\varphi \wedge[\alpha]\left[\alpha^{*}\right] \varphi \leftrightarrow\left[\alpha^{*}\right] \varphi$ (Fixed-Point Axiom)
7. $\varphi \wedge\left[\alpha^{*}\right](\varphi \rightarrow[\alpha] \varphi) \rightarrow\left[\alpha^{*}\right] \varphi$ (Induction Axiom)
8. Modus Ponens and Necessitation (for each program α)

Actions and Ability

An early approach to interpret PDL as logic of actions was put forward by Krister Segerberg.

Segerberg adds an "agency" program to the PDL language δA where A is a formula.
K. Segerberg. Bringing it about. JPL, 1989.

Actions and Agency

The intended meaning of the program ' δA ' is that the agent "brings it about that A ': formally, δA is the set of all paths p such that

Actions and Agency

The intended meaning of the program ' δA ' is that the agent "brings it about that A ': formally, δA is the set of all paths p such that

1. p is the computation according to some program α, and
2. α only terminates at states in which it is true that A

Actions and Agency

The intended meaning of the program ' δA ' is that the agent "brings it about that A^{\prime} : formally, δA is the set of all paths p such that

1. p is the computation according to some program α, and
2. α only terminates at states in which it is true that A

Interestingly, Segerberg also briefly considers a third condition:
3. p is optimal (in some sense: shortest, maximally efficient, most convenient, etc.) in the set of computations satisfying conditions (1) and (2).

Actions and Agency

The intended meaning of the program ' δA ' is that the agent "brings it about that A ': formally, δA is the set of all paths p such that

1. p is the computation according to some program α, and
2. α only terminates at states in which it is true that A

Interestingly, Segerberg also briefly considers a third condition:
3. p is optimal (in some sense: shortest, maximally efficient, most convenient, etc.) in the set of computations satisfying conditions (1) and (2).

The axioms:

1. $[\delta A] A$
2. $[\delta A] B \rightarrow([\delta B] C \rightarrow[\delta A] C)$

Actions and Agency in Branching Time

Alternative accounts of agency do not include explicit description of the actions:

STIT

- Each node represents a choice point for the agent.
- Each node represents a choice point for the agent.
- A history is a maximal branch in the above tree.
- Each node represents a choice point for the agent.
- A history is a maximal branch in the above tree.
- Formulas are interpreted at history moment pairs.
- Each node represents a choice point for the agent.
- A history is a maximal branch in the above tree.
- Formulas are interpreted at history moment pairs.
- At each moment there is a choice available to the agent (partition of the histories through that moment)
- Each node represents a choice point for the agent.
- A history is a maximal branch in the above tree.
- Formulas are interpreted at history moment pairs.
- At each moment there is a choice available to the agent (partition of the histories through that moment)
- The key modality is [i stit] φ which is intended to mean that the agent i can "see to it that φ is true".
- [i stit] φ is true at a history moment pair provided the agent can choose a (set of) branch(es) such that every future history-moment pair satisfies φ

STIT

We use the modality ' \diamond ' to mean historic possibility.
$\diamond[i$ stit $] \varphi$: "the agent has the ability to bring about φ ".

STIT Model

A STIT models is $\mathcal{M}=\langle T,<$, Choice, $V\rangle$ where

STIT Model

A STIT models is $\mathcal{M}=\langle T,<$, Choice, $V\rangle$ where

- $\langle T,<\rangle: T$ a set of moments, < a tree-like ordering on T (irreflexive, transitive, linear-past)

STIT Model

A STIT models is $\mathcal{M}=\langle T,<$, Choice, $V\rangle$ where

- $\langle T,<\rangle: T$ a set of moments, < a tree-like ordering on T (irreflexive, transitive, linear-past)
- Let Hist be the set of all histories, and $H_{t}=\{h \in$ Hist $\mid t \in h\}$ the histories through t.

STIT Model

A STIT models is $\mathcal{M}=\langle T,<$, Choice, $V\rangle$ where

- $\langle T,<\rangle: T$ a set of moments, < a tree-like ordering on T (irreflexive, transitive, linear-past)
- Let Hist be the set of all histories, and $H_{t}=\{h \in$ Hist $\mid t \in h\}$ the histories through t.
- Choice : $\mathcal{A} \times T \rightarrow \wp(\wp(H))$ is a function mapping each agent to a partition of H_{t}
- Choice $_{i}^{t} \neq \emptyset$
- $K \neq \emptyset$ for each $K \in$ Choice $_{i}^{t}$
- For all t and mappings $s_{t}: \mathcal{A} \rightarrow \wp\left(H_{t}\right)$ such that
$s_{t}(i) \in$ Choice $_{i}^{t}$, we have $\bigcap_{i \in \mathcal{A}} s_{t}(i) \neq \emptyset$

STIT Model

A STIT models is $\mathcal{M}=\langle T,<$, Choice, $V\rangle$ where

- $\langle T,<\rangle: T$ a set of moments, < a tree-like ordering on T (irreflexive, transitive, linear-past)
- Let Hist be the set of all histories, and $H_{t}=\{h \in$ Hist $\mid t \in h\}$ the histories through t.
- Choice : $\mathcal{A} \times T \rightarrow \wp(\wp(H))$ is a function mapping each agent to a partition of H_{t}
- Choice ${ }_{i}^{t} \neq \emptyset$
- $K \neq \emptyset$ for each $K \in$ Choice $_{i}^{t}$
- For all t and mappings $s_{t}: \mathcal{A} \rightarrow \wp\left(H_{t}\right)$ such that

$$
s_{t}(i) \in \text { Choice }_{i}^{t} \text {, we have } \bigcap_{i \in \mathcal{A}} s_{t}(i) \neq \emptyset
$$

- V : At $\rightarrow \wp(T \times$ Hist $)$ is a valuation function assigning to each atomic proposition

STIT Model

A STIT models is $\mathcal{M}=\langle T,<$, Choice, $V\rangle$ where

- $\langle T,<\rangle: T$ a set of moments, < a tree-like ordering on T (irreflexive, transitive, linear-past)
- Let Hist be the set of all histories, and $H_{t}=\{h \in$ Hist $\mid t \in h\}$ the histories through t.
- Choice : $\mathcal{A} \times T \rightarrow \wp(\wp(H))$ is a function mapping each agent to a partition of H_{t}
- Choice ${ }_{i}^{t} \neq \emptyset$
- $K \neq \emptyset$ for each $K \in$ Choice $_{i}^{t}$
- For all t and mappings $s_{t}: \mathcal{A} \rightarrow \wp\left(H_{t}\right)$ such that $s_{t}(i) \in$ Choice $_{i}^{t}$, we have $\bigcap_{i \in \mathcal{F}} s_{t}(i) \neq \emptyset$
- V : At $\rightarrow \wp(T \times$ Hist $)$ is a valuation function assigning to each atomic proposition

Many Agents

The previous model assumes there is one agent that "controls" the transition system.

Many Agents

The previous model assumes there is one agent that "controls" the transition system.

What if there is more than one agent?

Many Agents

The previous model assumes there is one agent that "controls" the transition system.

What if there is more than one agent? Independence of agents

Many Agents

The previous model assumes there is one agent that "controls" the transition system.

What if there is more than one agent? Independence of agents

Many Agents

The previous model assumes there is one agent that "controls" the transition system.

What if there is more than one agent? Independence of agents

STIT Language

$$
\varphi=p|\neg \varphi| \varphi \wedge \psi|[i s t i t] \varphi|[i \text { dstit : } \varphi] \mid \square \varphi
$$

STIT Language

$$
\varphi=p|\neg \varphi| \varphi \wedge \psi|[i s t i t] \varphi|[i \text { dstit : } \varphi] \mid \square \varphi
$$

- $\mathcal{M}, t / h \models p$ iff $t / h \in V(p)$

STIT Language

$$
\varphi=p|\neg \varphi| \varphi \wedge \psi \mid[i \text { stit }] \varphi \mid[i \text { dstit : } \varphi] \mid \square \varphi
$$

- $\mathcal{M}, t / h \models p$ iff $t / h \in V(p)$
- $\mathcal{M}, t / h \models \neg \varphi$ iff $\mathcal{M}, t / h \not \models \varphi$

STIT Language

$$
\varphi=p|\neg \varphi| \varphi \wedge \psi \mid[i \text { stit }] \varphi \mid[i \text { dstit : } \varphi] \mid \square \varphi
$$

- $\mathcal{M}, t / h \models p$ iff $t / h \in V(p)$
- $\mathcal{M}, t / h \models \neg \varphi$ iff $\mathcal{M}, t / h \not \models \varphi$
- $\mathcal{M}, t / h \models \varphi \wedge \psi$ iff $\mathcal{M}, t / h \models \varphi$ and $\mathcal{M}, t / h \models \psi$

STIT Language

$$
\varphi=p|\neg \varphi| \varphi \wedge \psi \mid[i \text { stit }] \varphi \mid[i \text { dstit : } \varphi] \mid \square \varphi
$$

- $\mathcal{M}, t / h \models p$ iff $t / h \in V(p)$
- $\mathcal{M}, t / h \models \neg \varphi$ iff $\mathcal{M}, t / h \not \models \varphi$
- $\mathcal{M}, t / h \models \varphi \wedge \psi$ iff $\mathcal{M}, t / h \models \varphi$ and $\mathcal{M}, t / h \models \psi$
- $\mathcal{M}, t / h \models \square \varphi$ iff $\mathcal{M}, t / h^{\prime} \models \varphi$ for all $h^{\prime} \in H_{t}$

STIT Language

$$
\varphi=p|\neg \varphi| \varphi \wedge \psi|[i s t i t] \varphi|[i d s t i t: \varphi] \mid \square \varphi
$$

- $\mathcal{M}, t / h \vDash p$ iff $t / h \in V(p)$
- $\mathcal{M}, t / h \models \neg \varphi$ iff $\mathcal{M}, t / h \nLeftarrow \varphi$
- $\mathcal{M}, t / h \models \varphi \wedge \psi$ iff $\mathcal{M}, t / h \models \varphi$ and $\mathcal{M}, t / h \models \psi$
- $\mathcal{M}, t / h \models \square \varphi$ iff $\mathcal{M}, t / h^{\prime} \models \varphi$ for all $h^{\prime} \in H_{t}$
- $\mathcal{M}, t / h \models[i \operatorname{stit}] \varphi$ iff $\mathcal{M}, t / h^{\prime} \models \varphi$ for all $h^{\prime} \in \operatorname{Choice}_{i}^{t}(h)$

STIT Language

$$
\varphi=p|\neg \varphi| \varphi \wedge \psi \mid[i \text { stit }] \varphi \mid[i \text { dstit : } \varphi] \mid \square \varphi
$$

- $\mathcal{M}, t / h \models p$ iff $t / h \in V(p)$
- $\mathcal{M}, t / h \models \neg \varphi$ iff $\mathcal{M}, t / h \not \models \varphi$
- $\mathcal{M}, t / h \models \varphi \wedge \psi$ iff $\mathcal{M}, t / h \models \varphi$ and $\mathcal{M}, t / h \models \psi$
- $\mathcal{M}, t / h \models \square \varphi$ iff $\mathcal{M}, t / h^{\prime} \models \varphi$ for all $h^{\prime} \in H_{t}$
- $\mathcal{M}, t / h \models[i$ stit $] \varphi$ iff $\mathcal{M}, t / h^{\prime} \models \varphi$ for all $h^{\prime} \in$ Choice $_{i}^{t}(h)$
- $\mathcal{M}, t / h \models[i d s t i t] \varphi$ iff $\mathcal{M}, t / h^{\prime} \models \varphi$ for all $h^{\prime} \in$ Choice $_{i}^{t}(h)$ and there is a $h^{\prime \prime} \in H_{t}$ such that $\mathcal{M}, t / h \models \neg \varphi$

STIT: Example

The following are false: $A \rightarrow \diamond[$ stit $] A$ and $\diamond[s t i t](A \vee B) \rightarrow \diamond[s t i t] A \vee \diamond[s t i t] B$.

J. Horty. Agency and Deontic Logic. 2001.

STIT: Axiomatics

- S5 for $\square: \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi), \square \varphi \rightarrow \varphi, \square \varphi \rightarrow \square \square \varphi$, $\neg \square \varphi \rightarrow \square \neg \square \varphi$

STIT: Axiomatics

- S5 for $\square: ~ \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi), \square \varphi \rightarrow \varphi, \square \varphi \rightarrow \square \square \varphi$, $\neg \square \varphi \rightarrow \square \neg \square \varphi$
- S5 for [i stit]: [i stit $](\varphi \rightarrow \psi) \rightarrow([i \operatorname{stit}] \varphi \rightarrow[i \operatorname{stit}] \psi)$, $[i$ stit $] \varphi \rightarrow \varphi,[i \operatorname{stit}] \varphi \rightarrow[i$ stit $][i$ stit $] \varphi$, $\neg[i$ stit $] \varphi \rightarrow[i$ stit $] \neg[i$ stit $] \varphi$

STIT: Axiomatics

- S5 for $\square: ~ \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi), \square \varphi \rightarrow \varphi, \square \varphi \rightarrow \square \square \varphi$, $\neg \square \varphi \rightarrow \square \neg \square \varphi$
- S5 for [i stit]: [i stit $](\varphi \rightarrow \psi) \rightarrow([i \operatorname{stit}] \varphi \rightarrow[i \operatorname{stit}] \psi)$, $[i \operatorname{stit}] \varphi \rightarrow \varphi,[i \operatorname{stit}] \varphi \rightarrow[i$ stit $][i$ stit $] \varphi$, $\neg[i$ stit $] \varphi \rightarrow[i$ stit $] \neg[i$ stit $] \varphi$
- $\square \varphi \rightarrow[i \operatorname{stit}] \varphi$

STIT: Axiomatics

- S5 for $\square: ~ \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi), \square \varphi \rightarrow \varphi, \square \varphi \rightarrow \square \square \varphi$, $\neg \square \varphi \rightarrow \square \neg \square \varphi$
- S5 for [i stit]: [i stit $](\varphi \rightarrow \psi) \rightarrow([i \operatorname{stit}] \varphi \rightarrow[i \operatorname{stit}] \psi)$, $[i \operatorname{stit}] \varphi \rightarrow \varphi,[i \operatorname{stit}] \varphi \rightarrow[i$ stit $][i$ stit $] \varphi$, $\neg[i$ stit $] \varphi \rightarrow[i$ stit $] \neg[i$ stit $] \varphi$
- $\square \varphi \rightarrow[i \operatorname{stit}] \varphi$
- $\left(\bigwedge_{i \in \mathcal{A}} \diamond[i s t i t] \varphi_{i}\right) \rightarrow \diamond\left(\bigwedge_{i \in \mathcal{A}}[i \operatorname{stit}] \varphi_{i}\right)$

STIT: Axiomatics

- S5 for $\square: ~ \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi), \square \varphi \rightarrow \varphi, \square \varphi \rightarrow \square \square \varphi$, $\neg \square \varphi \rightarrow \square \neg \square \varphi$
- S5 for [i stit]: [i stit $](\varphi \rightarrow \psi) \rightarrow([i$ stit $] \varphi \rightarrow[i \operatorname{stit}] \psi)$, $[i \operatorname{stit}] \varphi \rightarrow \varphi,[i \operatorname{stit}] \varphi \rightarrow[i$ stit $][i$ stit $] \varphi$, $\neg[i$ stit $] \varphi \rightarrow[i$ stit $] \neg[i$ stit $] \varphi$
- $\square \varphi \rightarrow[i \operatorname{stit}] \varphi$
- $\left(\bigwedge_{i \in \mathcal{A}} \diamond[i \operatorname{stit}] \varphi_{i}\right) \rightarrow \diamond\left(\bigwedge_{i \in \mathcal{A}}[i \operatorname{stit}] \varphi_{i}\right)$
- Modus Ponens and Necessitation for \square
M. Xu. Axioms for deliberative STIT. Journal of Philosophical Logic, Volume 27, pp. 505-552, 1998.
P. Balbiani, A. Herzig and N. Troquard. Alternative axiomatics and complexity of deliberative STIT theories. Journal of Philosophical Logic, 37:4, pp. 387-406, 2008.

Recap: Logics of Action and Ability

- $F \varphi: \varphi$ is true at some moment in the future

Recap: Logics of Action and Ability

- $F \varphi: \varphi$ is true at some moment in the future
- $\exists F \varphi$: there is a history where φ is true some moment in the future

Recap: Logics of Action and Ability

- $F \varphi: \varphi$ is true at some moment in the future
- $\exists F \varphi$: there is a history where φ is true some moment in the future
- $[\alpha] \varphi$: after doing action α, φ is true

Recap: Logics of Action and Ability

- $F \varphi: \varphi$ is true at some moment in the future
- $\exists F \varphi$: there is a history where φ is true some moment in the future
- $[\alpha] \varphi$: after doing action α, φ is true
- $[\delta \varphi] \psi$: after bringing about φ, ψ is true

Recap: Logics of Action and Ability

- $F \varphi: \varphi$ is true at some moment in the future
- $\exists F \varphi$: there is a history where φ is true some moment in the future
- $[\alpha] \varphi$: after doing action α, φ is true
- $[\delta \varphi] \psi$: after bringing about φ, ψ is true
- [i stit] φ : the agent can "see to it that" φ is true

Recap: Logics of Action and Ability

- $F \varphi: \varphi$ is true at some moment in the future
- $\exists F \varphi$: there is a history where φ is true some moment in the future
- $[\alpha] \varphi$: after doing action α, φ is true
- $[\delta \varphi] \psi$: after bringing about φ, ψ is true
- [i stit] φ : the agent can "see to it that" φ is true
- $\diamond[i \operatorname{stit}] \varphi$: the agent has the ability to bring about φ

Epistemizing logics of action and ability

Related Work: Knowing How to Execute a Plan

J. van Benthem. Games in dynamic epistemic logic. Bulletin of Economics Research 53, 4 (2001), 219 248..
J. Broersen. A logical analysis of the interaction between Obligation-to- do and knowingly doing. In Proceedings of DEON 2008.
Y. Lesperance, H. Levesque, F. Lin and R. Scherl. Ability and Knowing How in the Situation Calculus. Studia Logica 65, pgs. 165-186, 2000.
W. Jamroga and T. Agotnes. Constructive Knowledge: What Agents can Achieve under Imperfect Information. Journal of Applied NonClassical Logics 17(4):423-425, 2007.

Knowledge, action, abilities

A. Herzig and N. Troquard. Knowing how to play: uniform choices in logics of agency. Proceedings of AAMAS 2006, pgs. 209-216.
A. Herzig. Logics of knowledge and action: critical analysis and challenges. Autonomous Agent and Multi-Agent Systems, 2014.
J. Broeresen, A. Herzig and N. Troquard. What groups do, can do and know they can do: An analysis in normal modal logics. Journal of Applied and Non-Classical Logics, 19:3, pgs. 261-289, 2009.
W. van der Hoek and M. Wooldridge. Cooperation, knowledge and time: Alternating-time temporal epistemic logic and its applications. Studia Logica, 75, pgs. 125-157, 2003.

Example

A. Herzig and N. Troquard. Knowing how to play: uniform choices in logics of agency. In Proceedings of AAMAS 2006.

Example

Ann, who is blind, is standing with her hand on a light switch. She has two options: toggle the switch (t) or do nothing (s):

Example

Ann, who is blind, is standing with her hand on a light switch. She has two options: toggle the switch (t) or do nothing (s):

Example

Ann, who is blind, is standing with her hand on a light switch. She has two options: toggle the switch (t) or do nothing (s):

Does she have the ability to turn the light on? Is she capable of turning the light on? Does she know how to turn the light on?

Example

$w_{1} \models \neg \square f$: "Ann does not know the light is on"

Example

$w_{1} \models\langle t\rangle$ O "after toggling the light switch, the light will be on"

Example

$w_{1} \models \neg \square\langle t\rangle 0$: "Ann does not know that after toggling the light switch, the light will be on"

Example

$w_{1} \models \square(\langle t\rangle \top \wedge\langle s\rangle \top)$: "Ann knows that she can toggle the switch and she can do nothing"

Example

$w_{1} \models\langle t\rangle \neg \square 0$: "after toggling the switch Ann does not know that the light is on"

Example

Let I be "turn the light on": a choice between t and s

Example

$w_{1} \models\langle I\rangle^{\exists} 0 \wedge \neg\langle I\rangle^{\vee} 0$: executing I can lead to a situation where the light is on, but this is not guaranteed (i.e., the plan may fail)

Example

$w_{1} \models \square\langle I\rangle^{\exists} 0$: Ann knows that she is capable of turning the light on. She has de re knowledge that she can turn the light on.

Example

$w_{1} \models \neg\langle I\rangle^{\diamond}$: Ann cannot knowingly turn on the light: there is no subjective path leading to states satisfying o (note that all elements of the last element of the subject path must satisfy 0).

Knowing How to Win

"the plan is a winning strategy for Ann."

Knowing How to Win

"Ann knows that the plan is a winning strategy."

Knowing How to Win

" the plan can be executed, but Ann does not know how to use it to win."

Epistemic Temporal Logic

R. Parikh and R. Ramanujam. A Knowledge Based Semantics of Messages. Journal of Logic, Language and Information, 12: 453-467, 1985, 2003.

FHMV. Reasoning about Knowledge. MIT Press, 1995.

The 'Playground'

The 'Playground'

The 'Playground'

The 'Playground': Notation

The 'Playground': Notation

- Let Σ be any set. The elements of Σ are called events.

The 'Playground': Notation

- Let Σ be any set. The elements of Σ are called events.
- Given any set X, X^{*} is the set of finite strings over X and X^{ω} the set of infinite strings over X. Elements of $\Sigma^{*} \cup \Sigma^{\omega}$ will be called histories.

The 'Playground': Notation

- Let Σ be any set. The elements of Σ are called events.
- Given any set X, X^{*} is the set of finite strings over X and X^{ω} the set of infinite strings over X. Elements of $\Sigma^{*} \cup \Sigma^{\omega}$ will be called histories.
- Given $H \in \Sigma^{*} \cup \Sigma^{\omega}$, len (H) is the length of H.

The 'Playground': Notation

- Let Σ be any set. The elements of Σ are called events.
- Given any set X, X^{*} is the set of finite strings over X and X^{ω} the set of infinite strings over X. Elements of $\Sigma^{*} \cup \Sigma^{\omega}$ will be called histories.
- Given $H \in \Sigma^{*} \cup \Sigma^{\omega}$, len (H) is the length of H.
- Given $H, H^{\prime} \in \Sigma^{*} \cup \Sigma^{\omega}$, we write $H \leq H^{\prime}$ if H is a finite prefix of H^{\prime}.

The 'Playground': Notation

- Let Σ be any set. The elements of Σ are called events.
- Given any set X, X^{*} is the set of finite strings over X and X^{ω} the set of infinite strings over X. Elements of $\Sigma^{*} \cup \Sigma^{\omega}$ will be called histories.
- Given $H \in \Sigma^{*} \cup \Sigma^{\omega}$, len (H) is the length of H.
- Given $H, H^{\prime} \in \Sigma^{*} \cup \Sigma^{\omega}$, we write $H \leq H^{\prime}$ if H is a finite prefix of H^{\prime}.
- $\operatorname{FinPre}(\mathcal{H})=\left\{H \mid \exists H^{\prime} \in \mathcal{H}\right.$ such that $\left.H \leq H^{\prime}\right\}$ is the set of finite prefixes of the elements of \mathcal{H}.

The 'Playground': Notation

- Let Σ be any set. The elements of Σ are called events.
- Given any set X, X^{*} is the set of finite strings over X and X^{ω} the set of infinite strings over X. Elements of $\Sigma^{*} \cup \Sigma^{\omega}$ will be called histories.
- Given $H \in \Sigma^{*} \cup \Sigma^{\omega}$, len (H) is the length of H.
- Given $H, H^{\prime} \in \Sigma^{*} \cup \Sigma^{\omega}$, we write $H \leq H^{\prime}$ if H is a finite prefix of H^{\prime}.
- $\operatorname{FinPre}(\mathcal{H})=\left\{H \mid \exists H^{\prime} \in \mathcal{H}\right.$ such that $\left.H \leq H^{\prime}\right\}$ is the set of finite prefixes of the elements of \mathcal{H}.
- ϵ is the empty string and $\operatorname{FinPre}_{-\epsilon}(\mathcal{H})=\operatorname{FinPre}(\mathcal{H})-\{\epsilon\}$.

History-based Frames

Definition

Let Σ be any set of events. A set $\mathcal{H} \subseteq \Sigma^{*} \cup \Sigma^{\omega}$ is called a protocol provided FinPre $_{-\epsilon}(\mathcal{H}) \subseteq \mathcal{H}$. A rooted protocol is any set $\mathcal{H} \subseteq \Sigma^{*} \cup \Sigma^{\omega}$ where $\operatorname{FinPre}(\mathcal{H}) \subseteq \mathcal{H}$.

History-based Frames

Definition
Let Σ be any set of events. A set $\mathcal{H} \subseteq \Sigma^{*} \cup \Sigma^{\omega}$ is called a protocol provided FinPre $_{-\epsilon}(\mathcal{H}) \subseteq \mathcal{H}$. A rooted protocol is any set $\mathcal{H} \subseteq \Sigma^{*} \cup \Sigma^{\omega}$ where $\operatorname{FinPre}(\mathcal{H}) \subseteq \mathcal{H}$.

Definition

An ETL frame is a tuple $\left\langle\Sigma, \mathcal{H},\left\{\sim_{i}\right\}_{i \in \mathcal{A}}\right\rangle$ where Σ is a (finite or infinite) set of events, \mathcal{H} is a protocol, and for each $i \in \mathcal{A}, \sim_{i}$ is an equivalence relation on the set of finite strings in \mathcal{H}.

History-based Frames

Definition
Let Σ be any set of events. A set $\mathcal{H} \subseteq \Sigma^{*} \cup \Sigma^{\omega}$ is called a protocol provided FinPre $_{-\epsilon}(\mathcal{H}) \subseteq \mathcal{H}$. A rooted protocol is any set $\mathcal{H} \subseteq \Sigma^{*} \cup \Sigma^{\omega}$ where $\operatorname{FinPre}(\mathcal{H}) \subseteq \mathcal{H}$.

Definition

An ETL frame is a tuple $\left\langle\Sigma, \mathcal{H},\left\{\sim_{i}\right\}_{i \in \mathcal{A}}\right\rangle$ where Σ is a (finite or infinite) set of events, \mathcal{H} is a protocol, and for each $i \in \mathcal{A}, \sim_{i}$ is an equivalence relation on the set of finite strings in \mathcal{H}.

Some assumptions:

1. If Σ is assumed to be finite, then we say that \mathcal{F} is finitely branching.
2. If \mathcal{H} is a rooted protocol, \mathcal{F} is a tree frame.

Formal Languages

- $P \varphi$ (φ is true sometime in the past),
- $F \varphi$ (φ is true sometime in the future),
- $Y \varphi$ (φ is true at the previous moment),
- $N \varphi$ (φ is true at the next moment),
- $N_{e} \varphi$ (φ is true after event e)
- $K_{i} \varphi$ (agent i knows φ) and
- $C_{B} \varphi$ (the group $B \subseteq \mathcal{A}$ commonly knows φ).

History-based Models

An ETL model is a structure $\left\langle\mathcal{H},\left\{\sim_{i}\right\}_{i \in \mathcal{F}}, V\right\rangle$ where $\left\langle\mathcal{H},\left\{\sim \sim_{i}\right\}_{i \in \mathcal{H}}\right\rangle$ is an ETL frame and
$V: \mathrm{At} \rightarrow 2^{\text {finite }(\mathcal{H})}$ is a valuation function.

Formulas are interpreted at pairs H, t :

$$
H, t \models \varphi
$$

Truth in a Model

- $H, t \models P \varphi$ iff there exists $t^{\prime} \leq t$ such that $H, t^{\prime} \models \varphi$
- $H, t \models F \varphi$ iff there exists $t^{\prime} \geq t$ such that $H, t^{\prime} \models \varphi$
- $H, t \models N \varphi$ iff $H, t+1 \models \varphi$
- $H, t \models Y \varphi$ iff $t>1$ and $H, t-1 \models \varphi$
- $H, t \vDash K_{i} \varphi$ iff for each $H^{\prime} \in \mathcal{H}$ and $m \geq 0$ if $H_{t} \sim_{i} H_{m}^{\prime}$ then $H^{\prime}, m \models \varphi$
- $H, t \models C \varphi$ iff for each $H^{\prime} \in \mathcal{H}$ and $m \geq 0$ if $H_{t} \sim_{*} H_{m}^{\prime}$ then $H^{\prime}, m \models \varphi$.
where \sim_{*} is the reflexive transitive closure of the union of the \sim_{i}.

Truth in a Model

- $H, t \models P \varphi$ iff there exists $t^{\prime} \leq t$ such that $H, t^{\prime} \models \varphi$
- $H, t \models F \varphi$ iff there exists $t^{\prime} \geq t$ such that $H, t^{\prime} \models \varphi$
- $H, t \models N \varphi$ iff $H, t+1 \models \varphi$
- $H, t \models Y \varphi$ iff $t>1$ and $H, t-1 \models \varphi$
- $H, t \vDash K_{i} \varphi$ iff for each $H^{\prime} \in \mathcal{H}$ and $m \geq 0$ if $H_{t} \sim_{i} H_{m}^{\prime}$ then $H^{\prime}, m \models \varphi$
- $H, t \models C \varphi$ iff for each $H^{\prime} \in \mathcal{H}$ and $m \geq 0$ if $H_{t} \sim_{*} H_{m}^{\prime}$ then $H^{\prime}, m \models \varphi$.
where \sim_{*} is the reflexive transitive closure of the union of the \sim_{i}.

An Example

Ann would like Bob to attend her talk; however, she only wants Bob to attend if he is interested in the subject of her talk, not because he is just being polite.

An Example

Ann would like Bob to attend her talk; however, she only wants Bob to attend if he is interested in the subject of her talk, not because he is just being polite.

There is a very simple procedure to solve Ann's problem: have a (trusted) friend tell Bob the time and subject of her talk.

An Example

Ann would like Bob to attend her talk; however, she only wants Bob to attend if he is interested in the subject of her talk, not because he is just being polite.

There is a very simple procedure to solve Ann's problem: have a (trusted) friend tell Bob the time and subject of her talk.

Is this procedure correct?

An Example

Yes, if

1. Ann knows about the talk.

An Example

Yes, if

1. Ann knows about the talk.
2. Bob knows about the talk.

An Example

Yes, if

1. Ann knows about the talk.
2. Bob knows about the talk.
3. Ann knows that Bob knows about the talk.

An Example

Yes, if

1. Ann knows about the talk.
2. Bob knows about the talk.
3. Ann knows that Bob knows about the talk.
4. Bob does not know that Ann knows that he knows about the talk.

An Example

Yes, if

1. Ann knows about the talk.
2. Bob knows about the talk.
3. Ann knows that Bob knows about the talk.
4. Bob does not know that Ann knows that he knows about the talk.
5. And nothing else.

$H, 3 \models \varphi$

Bob's uncertainty: $\mathrm{H}, 3 \vDash \neg K_{B} P_{2 P M}$

Bob＇s uncertainty＋＇Protocol information＇：$H, 3 \models K_{B} P_{2 P M}$

Bob＇s uncertainty＋＇Protocol information＇：
$H, 3 \models \neg K_{B} K_{A} K_{B} P_{2 P M}$

Bob＇s uncertainty＋＇Protocol information＇：
$H, 3 \models \neg K_{B} K_{A} K_{B} P_{2 P M}$

Bob＇s uncertainty＋＇Protocol information＇：
$H, 3 \models \neg K_{B} K_{A} K_{B} P_{2 P M}$

Bob＇s uncertainty＋＇Protocol information＇：
$H, 3 \models \neg K_{B} K_{A} K_{B} P_{2 P M}$

Living at the Edge of Decidability

Living at the Edge of Decidability

1. Expressivity of the formal language. Does the language include a common knowledge operator? A future operator? Both?

Living at the Edge of Decidability

1. Expressivity of the formal language. Does the language include a common knowledge operator? A future operator? Both?
2. Structural conditions on the underlying event structure. Do we restrict to protocol frames (finitely branching trees)? Finitely branching forests? Or, arbitrary ETL frames?

Living at the Edge of Decidability

1. Expressivity of the formal language. Does the language include a common knowledge operator? A future operator? Both?
2. Structural conditions on the underlying event structure. Do we restrict to protocol frames (finitely branching trees)? Finitely branching forests? Or, arbitrary ETL frames?
3. Conditions on the reasoning abilities of the agents. Do the agents satisfy perfect recall? No miracles? Do they agents' know what time it is?

Agent Oriented Properties:

- No Miracles: For all finite histories $H, H^{\prime} \in \mathcal{H}$ and events $e \in \Sigma$ such that $H e \in \mathcal{H}$ and $H^{\prime} e \in \mathcal{H}$, if $H \sim_{i} H^{\prime}$ then $H e \sim_{i} H^{\prime} e$.
- Perfect Recall: For all finite histories $H, H^{\prime} \in \mathcal{H}$ and events $e \in \Sigma$ such that $H e \in \mathcal{H}$ and $H^{\prime} e \in \mathcal{H}$, if $H e \sim_{i} H^{\prime} e$ then $H \sim_{i} H^{\prime}$.
- Synchronous: For all finite histories $H, H^{\prime} \in \mathcal{H}$, if $H \sim_{i} H^{\prime}$ then len $(H)=\operatorname{len}\left(H^{\prime}\right)$.

Decidability in the Purely Temporal Setting

Theorem (Rabin)
The satisfiable problem for monadic second-order logic of the k-ary tree is decidable.
M. O. Rabin. Decidability of Second-Order Theories and Automata on Infinite Trees. Transactions of the American Mathematical Society, 141, 1969.

Theorem
The satisfiability problem for $\mathcal{L}_{T L}$ with respect to $T L$ tree models (without epistemic structure) is decidable.

Arbitrary Agents

Theorem
The satisfiability problem (with respect to a language $\mathcal{L}_{E T L}$ with C, F, etc.) is decidable - EXPTIME-complete).

Arbitrary Agents

Theorem
The satisfiability problem (with respect to a language $\mathcal{L}_{\text {ETL }}$ with
C,F, etc.) is decidable - EXPTIME-complete).

- The theorem holds if we restrict to tree models.

Ideal Agents

Assume there are two agents
Theorem
The satisfiability problem for $\mathcal{L}_{E T L}$ is highly undecidable under certain idealizations.

Ideal Agents

Assume there are two agents
Theorem
The satisfiability problem for $\mathcal{L}_{E T L}$ is highly undecidable under certain idealizations.

For example,
Theorem (Halpern \& Vardi)
On interpreted systems that satisfy perfect recall or no learning, the satisfiability problem for $\mathcal{L}_{E T L}$ is Σ_{1}^{1}-complete.
(no learning: For $H, H^{\prime} \in \mathcal{H}$, if $H_{t} \sim_{i} H_{t^{\prime}}^{\prime}$ then for all $k \geq t$ there exists $k^{\prime} \geq t^{\prime}$ such that $H_{k} \sim_{i} H_{k^{\prime}}^{\prime}$.)
J. Halpern and M. Vardi.. The Complexity of Reasoning abut Knowledge and Time. J. Computer and Systems Sciences, 38, 1989.
J. Horty and EP. Action Types in Stit Semantics. Review of Symbolic Logic, 2017.

Stit model

\langle Tree, <, Agent, Choice, V \rangle

Stit model

〈Tree,<,Agent, Choice, V〉

Stit model

\langle Tree, <, Agent, Choice, V〉

m / h denotes (m, h) with $m \in h$ is called an index

Stit model

\langle Tree, <, Agent, Choice, V〉

m / h denotes (m, h) with $m \in h$ is called an index

$$
H^{m}=\{h \mid m \in h\}
$$

Stit model

〈Tree,<,Agent, Choice, V〉

For $\alpha \in$ Agent, Choice ${ }_{\alpha}^{m}$ is a partition on H^{m}

Stit model

〈Tree,<, Agent, Choice, V〉

For $\alpha \in$ Agent, Choice ${ }_{\alpha}^{m}$ is a partition on H^{m}

Stit model

〈Tree,<,Agent, Choice, V〉

For $\alpha \in$ Agent, Choice ${ }_{\alpha}^{m}$ is a partition on H^{m}

Choice $_{\alpha}^{m}(h)$ is the particular action at m that contains h

Stit model

\langle Tree, <, Agent, Choice, V〉

V assigns sets of indices to atomic propositions.
$m_{2} / h_{1} \models A \quad m_{2} / h_{2} \not \models A$

- $\mathcal{M}, m / h \models \square A$ if and only if $\mathcal{M}, m / h^{\prime} \models A$ for all $h^{\prime} \in H^{m}$,

- $\mathcal{M}, m / h \models \square A$ if and only if $\mathcal{M}, m / h^{\prime} \models A$
- $\mathcal{M}, m / h \models[\alpha$ stit: $A]$ if and only if Choice $_{\alpha}^{m}(h) \subseteq|A|_{\mathcal{M}}^{m}$

- $\mathcal{M}, m / h \models \square A$ if and only if $\mathcal{M}, m / h^{\prime} \models A$
- $\mathcal{M}, m / h \models[\alpha$ stit: $A]$ if and only if Choice $_{\alpha}^{m}(h) \subseteq|A|_{\mathcal{M}}^{m}$ $m / h_{1} \models[\alpha$ stit: $B], m / h_{3} \not \models[\alpha$ stit: $B], m / h_{5} \models[\alpha$ stit: $\neg B]$

- $\mathcal{M}, m / h \models \square A$ if and only if $\mathcal{M}, m / h^{\prime} \models A$
- $\mathcal{M}, m / h \models[\alpha$ stit: $A]$ if and only if Choice ${ }_{\alpha}^{m}(h) \subseteq|A|_{\mathcal{M}}^{m}$
- Temporal modalities (P, F, ...)

Ability: $\diamond[\alpha$ stit: $A]$

- $m / h_{1} \not \models A \supset \diamond[\alpha$ stit: $A]$
- $m / h_{1} \not \vDash \diamond[\alpha$ stit: $A \vee B] \supset$ $\diamond[\alpha$ stit: $A] \vee \diamond[\alpha$ stit: $B]$
$\diamond[\alpha$ stit: $A]$ is a "causal sense" of ability. But, there is also an "epistemic sense" of ability...
$\diamond[\alpha$ stit: $A]$ is a "causal sense" of ability. But, there is also an "epistemic sense" of ability...

What needs to be added to stit models?

- Indistinguishability relation(s)
$\diamond[\alpha$ stit: $A]$ is a "causal sense" of ability. But, there is also an "epistemic sense" of ability...

What needs to be added to stit models?

- Indistinguishability relation(s)
- Action types

Epistemic stit models

A. Herzig. Logics of knowledge and action: critical analysis and challenges. Autonomous Agent and Multi-Agent Systems, 2014.
V. Goranko and EP. Temporal aspects of the dynamics of knowledge. in Johan van Benthem on Logic and Information Dynamics, Outstanding Contributions to Logic, (eds. Alexandru Baltag and Sonja Smets), pp. 235-266, 2014.
J. Broeresen, A. Herzig and N. Troquard. What groups do, can do and know they can do: An analysis in normal modal logics. Journal of Applied and Non-Classical Logics, 19:3, pgs. 261-289, 2009.
W. van der Hoek and M. Wooldridge. Cooperation, knowledge and time: Alternating-time temporal epistemic logic and its applications. Studia Logica, 75, pgs. 125-157, 2003.

Epistemic stit models

$\left\langle\right.$ Tree, $<$, Agent, Choice, $\left\{\sim_{\alpha}\right\}_{\alpha \in \text { Agent }}$, V \rangle

\sim_{α} is an equivalence relation on indices
$m / h \quad \sim_{\alpha} \quad m^{\prime} / h^{\prime}: \quad$ nothing α knows distinguishes m / h from m^{\prime} / h^{\prime}, or m / h and m^{\prime} / h^{\prime} are indistinguishable

Epistemic stit models

$\left\langle\right.$ Tree, $<$, Agent, Choice, $\left\{\sim_{\alpha}\right\}_{\alpha \in \text { Agent }}$, V \rangle

\sim_{α} is an equivalence relation on indices
$m / h \quad \sim_{\alpha} \quad m^{\prime} / h^{\prime}: \quad$ nothing α knows distinguishes m / h from m^{\prime} / h^{\prime}, or m / h and m^{\prime} / h^{\prime} are indistinguishable

Epistemic stit models

$\left\langle\right.$ Tree, $<$, Agent, Choice, $\left\{\sim_{\alpha}\right\}_{\alpha \in \text { Agent }}$, V \rangle

\sim_{α} is an equivalence relation on indices
$m / h \quad \sim_{\alpha} \quad m^{\prime} / h^{\prime}: \quad$ nothing α knows distinguishes m / h from m^{\prime} / h^{\prime}, or m / h and m^{\prime} / h^{\prime} are indistinguishable

Epistemic stit models

$\left\langle\right.$ Tree, $<$, Agent, Choice, $\left\{\sim_{\alpha}\right\}_{\alpha \in \text { Agent }}$, V \rangle

\sim_{α} is an equivalence relation on indices
$m / h \quad \sim_{\alpha} \quad m^{\prime} / h^{\prime}: \quad$ nothing α knows distinguishes m / h from m^{\prime} / h^{\prime}, or m / h and m^{\prime} / h^{\prime} are indistinguishable

Epistemic stit models

- $\mathcal{M}, m / h \models \mathrm{~K}_{\alpha} A$ if and only if, for all m^{\prime} / h^{\prime}, if $m / h \sim_{\alpha} m^{\prime} / h^{\prime}$, then $\mathcal{M}, m^{\prime} / h^{\prime} \models A$

Coin game

Coin game 1

Coin game 2

Ability

Ability

$\diamond[\alpha$ stit: $A]$ is settled true in at m_{2} and m_{3} in both models.

Ability

$\mathrm{K}_{\alpha} \diamond[\alpha$ stit: $A]$ is settled true in at m_{2} and m_{3} in both models.

Ability

$\diamond \mathrm{K}_{\alpha}[\alpha$ stit: $A]$ is settled false in at m_{2} and m_{3} in both models.

Ability

α has the ability to see to it that A in the epistemic sense just in case there is some action available to α that is known by α to guarantee the truth of A.

Ability

Coin game 3

Labeled stit model

$\left\langle\right.$ Tree, $<$, Agent, Choice, $\left\{\sim_{\alpha}\right\}_{\alpha \in \text { Agent }}$, Type, [], Label, V \rangle
Type $=\left\{\tau_{1}, \tau_{2}, \ldots\right\}$ is a finite set of action types-general kinds of action, as opposed to the concrete action tokens already present in stit logics.

Labeled stit model

$\left\langle\right.$ Tree, $<$, Agent, Choice, $\left\{\sim_{\alpha}\right\}_{\alpha \in \text { Agent }}$, Type, [], Label, V \rangle
Type $=\left\{\tau_{1}, \tau_{2}, \ldots\right\}$ is a finite set of action types-general kinds of action, as opposed to the concrete action tokens already present in stit logics.
[] is a partial function mapping types to the particular action token $[\tau]_{\alpha}^{m}$ that results when τ is executed by α at m.

Labeled stit model

$\left\langle\right.$ Tree, $<$, Agent, Choice, $\left\{\sim_{\alpha}\right\}_{\alpha \in \text { Agent }}$, Type, [], Label, V \rangle
Type $=\left\{\tau_{1}, \tau_{2}, \ldots\right\}$ is a finite set of action types-general kinds of action, as opposed to the concrete action tokens already present in stit logics.
[] is a partial function mapping types to the particular action token $[\tau]_{\alpha}^{m}$ that results when τ is executed by α at m.

- $[\tau]_{\alpha}^{m} \in$ Choice $_{\alpha}^{m}$

Labeled stit model

$\left\langle\right.$ Tree, $<$, Agent, Choice, $\left\{\sim_{\alpha}\right\}_{\alpha \in \text { Agent }}$, Type, [], Label, V〉
Type $=\left\{\tau_{1}, \tau_{2}, \ldots\right\}$ is a finite set of action types-general kinds of action, as opposed to the concrete action tokens already present in stit logics.
[] is a partial function mapping types to the particular action token $[\tau]_{\alpha}^{m}$ that results when τ is executed by α at m.

- $[\tau]_{\alpha}^{m} \in$ Choice $_{\alpha}^{m}$

Label is a 1-1 function mapping Choice $_{\alpha}^{m}$ to action types.

Labeled stit model

$\left\langle\right.$ Tree, $<$, Agent, Choice, $\left\{\sim_{\alpha}\right\}_{\alpha \in \text { Agent }}$, Type, [], Label, V \rangle
Type $=\left\{\tau_{1}, \tau_{2}, \ldots\right\}$ is a finite set of action types-general kinds of action, as opposed to the concrete action tokens already present in stit logics.
[] is a partial function mapping types to the particular action token $[\tau]_{\alpha}^{m}$ that results when τ is executed by α at m.

- $[\tau]_{\alpha}^{m} \in$ Choice $_{\alpha}^{m}$

Label is a 1-1 function mapping Choice $_{\alpha}^{m}$ to action types.

- If $K \in$ Choice $_{\alpha}^{m}$, then $[\operatorname{Label}(K)]_{m}^{\alpha}=K$
- If $\tau \in$ Type and $[\tau]_{\alpha}^{m}$ is defined, then $\operatorname{Label}\left([\tau]_{\alpha}^{m}\right)=\tau$

Labeled stit model, continued

$\left\langle\right.$ Tree, <, Agent, Choice, $\left\{\sim_{\alpha}\right\}_{\alpha \in \text { Agent }}$, Type, [], Label, V〉

$$
\operatorname{Type}_{\alpha}^{m}=\left\{\operatorname{Label}(K) \mid K \in \text { Choice }_{\alpha}^{m}\right\}
$$

$$
\operatorname{Type}_{\alpha}^{m}(h)=\text { Label }\left(\text { Choice }_{\alpha}^{m}(h)\right)
$$

kstit

- $\mathcal{M}, m / h \models[\alpha$ kstit: $A]$ if and only if $\left[\operatorname{Type}_{\alpha}^{m}(h)\right]_{\alpha}^{m^{\prime}} \subseteq|A|_{\mathcal{M}}^{m^{\prime}}$ for all m^{\prime} / h^{\prime} such that $m^{\prime} / h^{\prime} \sim_{\alpha} m / h$.

The difference between $C 1$ and $C 2$

(C1) If $m / h \sim_{\alpha} m^{\prime} / h^{\prime}$, then Type $_{\alpha}^{m}=$ Type $_{\alpha}^{m^{\prime}}$
(C2) If $m / h \sim_{\alpha} m^{\prime} / h^{\prime}$, then $\left[\text { Type }_{\alpha}^{m}(h)\right]_{\alpha}^{m^{\prime}}$ is defined.

Minimal Constraint

Knowledge of action types

Let A_{α}^{τ} be an atomic proposition carrying the intuitive meaning that the agent α executes the action type τ.

- $\mathcal{M}, m / h \models A_{\alpha}^{\tau}$ if and only if $\operatorname{Type}_{\alpha}^{m}(h)=\tau$

Knowledge of action types

Let A_{α}^{τ} be an atomic proposition carrying the intuitive meaning that the agent α executes the action type τ.

- $\mathcal{M}, m / h \models A_{\alpha}^{\tau}$ if and only if $\operatorname{Type}_{\alpha}^{m}(h)=\tau$
$C 2$ is satisfied iff $\diamond A_{\alpha}^{\tau} \supset \mathrm{K}_{\alpha} \diamond A_{\alpha}^{\tau}$ is valid.

Epistemic sense of ability

$\diamond[\alpha$ kstit: $A]$ is settled true at m_{2} and m_{3}.

Epistemic sense of ability

$\diamond[\alpha$ kstit: $A]$ is settled true at m_{2} and m_{3}.

Epistemic sense of ability

$\diamond[\alpha$ kstit: $A]$ is settled true at m_{2} and m_{3}.

Epistemic sense of ability

$\diamond[\alpha$ kstit: $A]$ is settled false at m_{2} and m_{3}.

Epistemic sense of ability

$\diamond[\alpha$ kstit: $A]$ is settled false at m_{2} and m_{3}.

Discussion: Related Work

A. Herzig and N. Troquard. Knowing how to play: uniform choices in logics of agency. In Proceedings of the Fifth International Joint Conference on Autonomous Agents and Multi-agent Systems (AAMAS-06), pages 209-216. 2006..
J. Broersen. Deontic epistemic stit logic distinguishing modes of mens rea. Journal of Applied Logic, 9(2):127-152, 2011.
A. Herzig and E. Lorini. A Dynamic Logic of Agency I: STIT, Capabilities and Powers. Journal of Logic, Language and Information 19(1): 89-121, 2010.

EP, R. Parikh, and E. Cogan. The logic of knowledge based obligation. Synthese, 149:2, pp. 311-341, 2006.
M. Xu. Combinations of stit and actions. Journal of Logic, Language, and Information, 19:485-503, 2010.

Discussion

Validities:

- $\mathrm{K}_{\alpha}[\alpha$ stit: $A] \supset[\alpha$ kstit: $A]$
- $[\alpha$ kstit: $A] \supset[\alpha$ stit: $A]$

Discussion

Validities:

- $\mathrm{K}_{\alpha}[\alpha$ stit: $A] \supset[\alpha$ kstit: $A]$
- $[\alpha$ kstit: A] $\supset[\alpha$ stit: A]

Non-Validities:
$-\diamond[\alpha$ kstit: $A] \supset \mathrm{K}_{\alpha} \diamond[\alpha$ kstit: $A]$

Constraints

(C3) If $m / h \sim_{\alpha} m^{\prime} / h^{\prime}$, then $m=m^{\prime}$
(C3) is satisfied iff $[\alpha$ stit: $A] \equiv[\alpha$ kstit: $A]$ is valid.
(C4) If $m / h \sim_{\alpha} m^{\prime} / h^{\prime}$, then $\operatorname{Type}_{\alpha}^{m}(h)=\operatorname{Type}_{\alpha}^{m^{\prime}}\left(h^{\prime}\right)$
(C4) is satisfied iff $A_{\alpha}^{\tau} \supset \mathrm{K}_{\alpha} A_{\alpha}^{\tau}$ is valid.

Deliberative perspective

(C5) If $m / h \sim_{\alpha} m^{\prime} / h^{\prime}$, then $m / h^{\prime \prime} \sim_{\alpha} m^{\prime} / h^{\prime \prime \prime}$ for all $h^{\prime \prime} \in H^{m}$ and $h^{\prime \prime \prime} \in H^{m^{\prime}}$

Indistinguishability between moments: $m \sim_{\alpha} m^{\prime}$ iff $m / h \sim_{\alpha} m^{\prime} / h^{\prime}$ for all $h \in H^{m}$ and $h^{\prime} \in H^{m^{\prime}}$.

Discussion

- Language/validities

```
\squareA \supset[\alpha stit: A]
K
[\alpha kstit: A] \equiv K _act [\alpha stit: A]
```

- What do the agents know vs. What do the agents know given what they are doing.
- Equivalence between labeled stit models (cf. Thompson transformations specifying when two imperfect information games reduce to the same Normal form)

