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I Conditional Logic
I Logic of knowledge, evidence and belief
I Coalitional logic
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Conditional Logic

One of the earliest applications of neighborhood models is
found in David Lewis’s seminal book Counterfactuals.
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Conditionals

1. If it’s a square, then it’s rectangle.
2. If A ⊆ B, then A ∩ B = A .
3. If you strike the match, it will light.
4. If you had struck the match, it would have lit.

Role of conditionals in mathematical, practical and causal
reasoning.
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Material conditional: ϕ→ ψ

ϕ→ ψ is true if either the antecedent (ϕ) is false or the
consequent (ψ) is true.

Conditional: ϕ� ψ
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Whatever the proper analysis of the contrafactual conditional
may be, we may be sure in advance that it cannot be
truth-functional; for, obviously ordinary usage demands that
some contrafactual conditionals with false antecedents and
false consequents be true and that other contrafactual
conditionals with false antecedents and false consequents be
false

W.V.O. Quine. Methods of Logic. 1950.

I If I weighed more than 300 pounds, I would weigh more
than 200 pounds.

I If I weighed more than 300 pounds, I would weigh less
than 10 pounds.
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(MP) ϕ→ ψ,ϕ ` ψ

(MT) ϕ→ ψ,¬ψ ` ¬ϕ

(DS) ϕ ∨ ψ ` ¬ϕ→ ψ
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(FA) ¬ϕ ` ϕ→ ψ

(TC) ψ ` ϕ→ ψ

(C) ϕ→ ψ ` ¬ψ→ ¬ϕ

(Mon) ϕ→ ψ ` (ϕ ∧ χ)→ ψ

(Trans) ϕ→ ψ,ψ→ χ ` ϕ→ χ
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¬ϕ ` ϕ→ ψ

Beijing is not in Maryland. ?? So, if Beijing is in Maryland, then
Trump is a Democrat.

ψ ` ϕ→ ψ

Eric was in Maryalnd this morning. ?? So, if Eric was in Beijing
this morning, then Eric was in Maryland this morning.
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ϕ→ ψ ` (ϕ ∧ χ)→ ψ

If I put sugar in my coffee, then it will taste good. ?? So, if I put
sugar and gasoline in my coffee, then it will taste good.

If this match is struck, then it will light. ?? So, if this match is
soaked overnight and struck, then it will light.
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ϕ→ ψ,ψ→ χ ` ϕ→ χ

If I quit my job, I won’t be able to afford my apartment. But if I
win 10 million dollars, I will quit my job. ?? So, if I win 10 million
dollars, I won’t be able to afford my apartment.
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Sphere Models

A set of spheres is a subset space 〈W ,S〉, where

I S is nested: For all S ,T ∈ S, either S ⊆ T or T ⊆ S.
I S is closed under unions: If {Si | i ∈ I} ⊆ S for some index

set I, then
⋃

i∈I Si ∈ S.
I S is closed under intersections: If {Si | i ∈ I} ⊆ S for some

index set I, then
⋂

i∈I Si ∈ S.

We say that a system of spheres 〈W ,S〉 is centered on w ∈W
provided that {w} ∈ S.
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Sphere Frames/Models

A sphere frame is a neighborhood frame 〈W ,N〉, where W , ∅
and for all w ∈W , 〈W ,N(w)〉 is a set of spheres. We say that
〈W ,N〉 is centered provided that for all w ∈W , N(w) is
centered on w.
A sphere model is a tuple 〈W ,N,V〉 where 〈W ,N〉 is a sphere
frame and V : At→ ℘(W) is a valuation function.
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Conditional Logic

p | ¬ϕ | (ϕ ∧ ψ) | (ϕ� ψ)

The intended interpretation of ϕ� ψ is “if ϕ, then ψ”.

M,w |= ϕ� ψ iff either
⋃

N(w) ∩ [[ϕ]]M = ∅ or there is a
S ∈ N(w) such that [[ϕ]]M ∩ S , ∅ and [[ϕ]]M ∩ S ⊆ [[ψ]]M.
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Monotonicity property: if ϕ→ ψ is valid, then so is (ϕ ∧ χ)→ ψ.

Claim. The rule:

if ϕ� ψ is valid, then so is (ϕ ∧ χ)� ψ

is not valid.
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Transitivity: ((ϕ→ ψ) ∧ (ψ→ χ))→ (ϕ→ χ) is valid

Claim. The axiom:

((ϕ� ψ) ∧ (ψ� χ))→ (ϕ� χ)

is not valid.

Eric Pacuit 17



Transitivity: ((ϕ→ ψ) ∧ (ψ→ χ))→ (ϕ→ χ) is valid

Claim. The axiom:

((ϕ� ψ) ∧ (ψ� χ))→ (ϕ� χ)

is not valid.

Eric Pacuit 17



w v1 v2

v3

v4

v5

r

p

q

S1S2S3S4

M |= (p � q) ∧ (q� r) ∧ ¬(p � r)
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Other Modalities

Outer modality

M,w |= [o]ϕ iff
⋃

N(w) ⊆ [[ϕ]]M.

[o]ϕ ↔ ¬ϕ� ⊥

Inner modality

M,w |= [i]ϕ iff there is some S ∈ N(w) such that ∅ , S ⊆ [[ϕ]]M.

[i]ϕ↔ >� ϕ.
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Other Modalities

Binary Modality

ϕ � ψ means “ϕ is at least as possible as ψ” or “it is no more
far-fetched that ϕ than that ψ”

I M,w |= ϕ � ψ iff for all S ∈ N(w), if S ∩ [[ψ]]M , ∅, then
S ∩ [[ϕ]]M , ∅.

I M,w |= ϕ ≺ ψ iff there is an S ∈ N(w) such that
S ∩ [[ϕ]]M , ∅ and S ∩ [[ψ]]M = ∅.

(ϕ� ψ) ↔ ((ϕ ≺ ⊥)→ ((ϕ ∧ ψ) ≺ (ϕ ∧ ¬ψ)))

(ϕ ≺ ψ) ↔ 〈o〉(ϕ ∨ ψ) ∧ ((ϕ ∨ ψ)� ψ)
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A (Dynamic) Logic of Knowledge, Evidence and Belief

J. van Benthem and EP. Dynamic Logics of Evidence-Based Beliefs.
Studia Logica, 99, pp. 61 - 92, 2011.

J. van Benthem, D. Fernández-Duque and EP. Evidence Logic: A New
Look at Neighborhood Structures. Proceedings of Advances in Modal
Logic, King’s College Publications, 2012.

J. van Benthem, D. Fernández-Duque and EP. Evidence and Plausi-
bility in Neighborhood Structures. Annals of Pure and Applied Logic,
2013.
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Setting the Stage: Evidence

I Dempster-Shafer Theory of Evidence

G. Shafer. A Mathematical Theory of Evidence. Princeton University
Press, 1976.

I Bayesian Confirmation Theory (eg., E confirms H iff
p(H | E) > p(H))

B. Fitelson. The Plurality of Bayesian Measures of Confirmation and
the Problem of Measure Sensitivity. Philosophy of Science 66, 1999.
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Setting the Stage: Evidence

I Artemov/Fitting’s Justification Logic (t :ϕ: “t is a
justification/proof for ϕ”)

S. Artemov and M. Fitting. Justification logic. The Stanford Encyclo-
pedia of Philosophy, 2012.

I Moss and Parikh’s “topologic” (x ,U |= ϕ: “ϕ is true at the
state x given that the current evidence/“measurement”
gathered is U”)

L. Moss and R. Parikh. Topological reasoning and the logic of knowl-
edge. Proceedings of TARK IV, Morgan Kaufmann, 1992.
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Setting the Stage: Reasons

I Kratzer Semantics (modal base), believing for a reason
(deriving an ordering on worlds from an ordering over
propositions)

A. Kratzer. What must and can must and can mean. Linguistics and
Philosophy 1 (1977) 337355.

C. List and F. Dietrich. Reasons for (prior) belief in bayesian episte-
mology. 2012.

I Reason management (Default logic with priorities)

J. Horty. Reasons as Defaults. 2012.
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Modeling Evidence: Some Distinctions

Barest view: the evidence is encoded as the current range of
worlds the agent considers possible

Ignores how we arrived at this epistemic state

Richest view: complete syntactic details of what we have
learned so far (including the sources of each piece of evidence)

In between: family of subsets representing evidence from
received from various (possible unreliable) sources
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Evidence Models: Basic Assumptions

Let W be a set of possible worlds or states one of which
represents the “actual” situation.

1. Sources may or may not be reliable: a subset recording a
piece of evidence need not contain the actual world. Also,
agents need not know which evidence is reliable.

2. The evidence gathered from different sources (or even the
same source) may be jointly inconsistent. And so, the
intersection of all the gathered evidence may be empty.

3. Despite the fact that sources may not be reliable or jointly
inconsistent, they are all the agent has for forming beliefs.
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Evidential States

An evidential state is a collection of subsets of W .

Assumptions:
I No evidence set is empty (no contradictory evidence),
I The whole universe W is an evidence set (agents know

their ‘space’).

In addition, much of the literature would suggest a
‘monotonicity’ assumption:

If the agent has evidence X and X ⊆ Y then the agent
has evidence Y.
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Example: W = {w, v} where p is true only at w

w v

There is no evi-
dence for or against
p.

w v

There is ev-
idence that
supports p.

w v

There is ev-
idence that
rejects p.

w v

There is evidence that
supports p and also
evidence that rejects
p.
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Evidence Models

Evidence model: M = 〈W ,E,V〉
I W is a non-empty set of worlds,
I V : At→ ℘(W) is a valuation function, and
I E : W → ℘(℘(W)) is an evidence relation

X ∈ E(w): “the agent accepts X as evidence at state w”.

Uniform evidence model (E is a constant function):
〈W ,E,V〉,w where E is the fixed family of subsets of W related
to each state by E.
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Assumptions

(Cons) For each state w, ∅ < E(w).

(Triv) For each state w, W ∈ E(w).
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The Basic Language L of Evidence and Belief

p | ¬ϕ | ϕ ∧ ψ | 〈 ]ϕ | [B]ϕ | [A ]ϕ

I 〈 ]ϕ says that “the agent has evidence that ϕ is true” (i.e.,
“the agent has evidence for ϕ”)

I [B]ϕ says that “the agents believes that ϕ is true” (based
on her evidence)

I [A ]ϕ says that “ϕ is true in all states” (which we interpret
as the agent’s knowledge)
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Truth

I M,w |= p iff w ∈ V(p) (p ∈ At)

I M,w |= ¬ϕ iffM,w 6|= ϕ

I M,w |= ϕ ∧ ψ iffM,w |= ϕ andM,w |= ψ

I M,w |= 〈 ]ϕ iff there exists X such that X ∈ E(w) and for
all v ∈ X ,M, v |= ϕ

I M,w |= [A ]ϕ iff for all v ∈W ,M, v |= ϕ
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“Having evidence for ϕ” vs. “Accepting ϕ as evidence”

We do not assume that the evidence sets are closed under
supersets, though our semantic definition implies that the set of
propositions that the agent has evidence for is closed under
weakening.

So, an agent can have evidence for X without accepting the set
X as evidence.
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Defining Beliefs

w-scenario: A maximal family of evidence sets X ⊆ E(w) that
has the finite intersection property (f.i.p.: for each finite
subfamily {X1, . . . ,Xn} ⊆ X,

⋂
1≤i≤n Xi , ∅).

An agent believes ϕ at w if each w-scenario implies that ϕ is
true (i.e., ϕ is true at each point in the intersection of each
w-scenario).
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Defining Beliefs

X0

X1

X2

X3

X4X5

X6

X7

X8

Our definition of belief is very conservative, many other defi-
nitions are possible (there exists a w-scenario, “most” of the
w-scenarios,...)
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Conditional Beliefs on Evidence Models

X0

X1

X2

X3

X4X5

X6

X7

X8
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Conditional Beliefs on Evidence Models

Bϕψ: “the agent believes ψ conditional on ϕ.”

Main idea: Ignore the evidence that is inconsistent with ϕ.

Relativized w-scenario: Suppose that X ⊆W . Given a
collection X ⊆ ℘(W), let XX = {Y ∩ X | Y ∈ X}. We say that a
collection X of subsets of W has the finite intersection
property relative to X (X -f.i.p.) if, XX as the f.i.p. and is
maximal if XX is.

I M,w |= Bϕψ iff for each maximal ϕ-f.i.p. X ⊆ E(w), for
each v ∈

⋂
X
ϕ,M, v |= ψ
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Conditional Beliefs: Example
Bψ→ Bϕψ is not valid.

Is Bψ→ Bϕψ ∨ B¬ϕψ valid? No

X1 Y1

¬p,¬q p,q p,¬q

X2 Y2

p,¬q ¬p,q ¬p,¬q

M,w |= Bq
M,w |= ¬Bpq
M,w |= ¬B¬pq
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Conditional Evidence

�ϕψ: “the agent has evidence for ψ conditional on ϕ being
true”.

X ⊆W is consistent (compatible) with ϕ if X ∩ [[ϕ]]M , ∅.

I M,w |= 〈 ]ϕψ iff there exists an evidence set X ∈ E(w)
consistent with ϕ such that for all v ∈ X ∩ [[ϕ]]M,M, v |= ψ.

〈 ]ϕψ is not equivalent to 〈 ](ϕ→ ψ): if there is no evidence
consistent with ϕ, then 〈 ]ϕψ is false.
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Truth

I M,w |= p iff w ∈ V(p) (p ∈ At)

I M,w |= ¬ϕ iffM,w 6|= ϕ

I M,w |= ϕ ∧ ψ iffM,w |= ϕ andM,w |= ψ

I M,w |= 〈 ]ϕ iff there exists X such that wEX and for all
v ∈ X ,M, v |= ϕ

I M,w |= 〈 ]ϕψ iff there exists an evidence set X ∈ E(w)
consistent with ϕ such that for all v ∈ X ∩ [[ϕ]]M,M, v |= ψ.

I M,w |= [A ]ϕ iff for all v ∈W ,M, v |= ϕ

I M,w |= [B]ϕ for all w-scenarios X ⊆ E(w), for all v ∈
⋂
X,

M, v |= ϕ

I M,w |= Bϕψ iff for each maximal ϕ-f.i.p. X ⊆ E(w), for
each v ∈

⋂
X
ϕ,M, v |= ψ
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Flat Evidence Models

An evidence modelM is flat if every scenario onM has
non-empty intersection.

Proposition. The formula 〈 ]ϕ→ 〈B〉ϕ is valid on the class of
flat evidence models, but not on the class of all evidence
models.
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1. Prove that 〈 ]ϕ ∧ [A ]ψ↔ 〈 ](ϕ ∧ [A ]ψ) is valid on all
evidence models.

2. Prove that [B]ϕ→ [A ][B]ϕ is valid on all uniform evidence
models.

3. Show that 〈 ]ϕ→ 〈 ]〈 ]ϕ is only valid on uniform evidence
models.
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X Subset spaces, neighborhood frames/models, reasoning
about subset spaces

X Logic of knowledge, evidence and belief
I Coalitional logic
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Coalitional Logic

M. Pauly. A Modal Logic for Coalitional Powers in Games. Journal of
Logic and Computation, 12:1, pp. 149 - 166, 2002.

M. Pauly. Logic for Social Software. PhD Thesis, Institute for Logic,
Language and Computation, 2001.
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Strategic Game Forms

〈N, {Si}i∈N ,O ,o〉

I N is a finite set of players;

I for each i ∈ N, Si is a non-empty set (elements of which
are called actions or strategies);

I O is a non-empty set (elements of which are called
outcomes); and

I o : Πi∈NSi → O is a function assigning an outcome
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Bob

A
nn

U t1 t2 C

s1 o1 o2 U

s2 o2 o3 U

s3 o4 o1 U
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α-Effectivity

S = Πi∈NSi are called strategy profiles. Given a strategy
profile s ∈ S, let si denote i’s component and s−i the profile of
strategies from s for all players except i.

A strategy for a coalition C is a sequence of strategies for each
player in C, i.e., sC ∈ Πi∈CSi (similarly for sC , where C is N −C).

Suppose that G = 〈N, {Si}i∈N ,O ,o〉 be a strategic game form.
An α-effectivity function is a map Eα

G : ℘(N)→ ℘(℘(O))
defined as follows: For all C ⊆ N, X ∈ Eα

G(C) iff there exists a
strategy profile sC such that for all sC ∈ Πi∈N−CSi , o(sC , sC) ∈ X .

Eric Pacuit 45



α-Effectivity

S = Πi∈NSi are called strategy profiles. Given a strategy
profile s ∈ S, let si denote i’s component and s−i the profile of
strategies from s for all players except i.

A strategy for a coalition C is a sequence of strategies for each
player in C, i.e., sC ∈ Πi∈CSi (similarly for sC , where C is N −C).

Suppose that G = 〈N, {Si}i∈N ,O ,o〉 be a strategic game form.
An α-effectivity function is a map Eα

G : ℘(N)→ ℘(℘(O))
defined as follows: For all C ⊆ N, X ∈ Eα

G(C) iff there exists a
strategy profile sC such that for all sC ∈ Πi∈N−CSi , o(sC , sC) ∈ X .

Eric Pacuit 45



α-Effectivity vs. β-Effectivity

∃ “something a player/a coalition can do” such that ∀ “actions of
the other players/nature”...

∀ “(joint) actions of the other players”, ∃ “something the
agent/coalition can do”...
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Bob

A
nn

U t1 t2 C

s1 o1 o2 U

s2 o2 o3 U

s3 o4 o1 U

Eα
G0

({A }) = sup({{o1,o2}, {o2,o3}, {o1,o4}})

Eα
G0

({B}) = sup({{o1,o2,o4}, {o1,o2,o3}})

Eα
G0

({A ,B}) = sup({o1}, {o2}, {o3}, {o4}}) = ℘(O) − ∅

Eα
G0

(∅) = {{o1,o2,o3,o4,o5,o6}}
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Playable Effectivity Functions

1. (Liveness) For all C ⊆ N, ∅ < E(C)

2. (Safety) For all C ⊆ N, O ∈ E(C)

3. (N-maximality) For all X ⊆ O , if X ∈ E(N) then X < E(∅)

4. (Outcome-monotonicity) For all X ⊆ X ′ ⊆ O , and C ⊆ N, if
X ∈ E(C) then X ′ ∈ E(C)

5. (Superadditivity) For all subsets X1,X2 of O and sets of
agents C1,C2, if C1 ∩ C2 = ∅, X1 ∈ E(C1) and X2 ∈ E(C2),
then X1 ∩ X2 ∈ E(C1 ∪ C2)
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E({i}) = {X | X ⊆N is infinite};

E(∅) = {X | X ⊆N is cofinite (i.e., X is finite)};

Claim. E satisfies Liveness, Safety, N-maximality, Outcome
Monotonicity, Superadditivity, but is not the effectivity function of
any game.
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Core-Complete

Suppose that (W ,F ) is a monotonic subset space. The
non-monotonic core, denoted F nc , is a subset of F defined
as follows:

F
nc = {X | X ∈ F and for all X ′ ⊆W , if X ′ ⊆ X , then X ′ < F }.

Does every subset space (W ,F ) have a non-monotonic core?

No.

A monotonic collection of sets F is core-complete provided for
all X ∈ F , there exists a Y ∈ F nc such that Y ⊆ X .
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Observation. Suppose that G = 〈N, {Si}i∈N ,O ,o〉 is a strategic
game form and Eα

G is the associated α-effectivity function. Then
the non-monotonic core of Eα

G(∅) = {range(o)}, where
range(o) = {x ∈ O | there is a s ∈ Πi∈NSi such that o(s) = x}.

Claim. If E(∅) = {Y | Y is co-finite}, then Enc(∅) = ∅.

6. (Empty Coalition) E(∅) is core complete.
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Characterizing Playable Effectivity Functions

Theorem (Pauly 2001; Goranko, Jamorga and Turrini 2013). If
E : ℘(N)→ ℘(℘(O)) is a function that satisfies the conditions
1-6 given above, then E = Eα

G for some strategic game form.

V. Goranko, W. Jamroga, and P. Turrini. Strategic Games and Truly
Playable Effectivity Functions. Journal of Autonomous Agents and
Multiagent Systems, 26(2), pgs. 288 - 314, 2013.

M. Pauly. Logic for Social Software. PhD Thesis, Institute for Logic,
Language and Computation, 2001.
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Coalitional Models

A coalitional logic model is a tupleM = 〈W ,E,V〉 where W is a
set of states, E : W → (℘(N)→ ℘(℘(W))) assigns to each
state a playable effectivity function, and V : At→ ℘(W) is a
valuation function.

M,w |= [C]ϕ iff [[ϕ]]M = {w | M,w |= ϕ} ∈ E(w)(C)
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Coalitional Logic: Axiomatics

1. (Liveness) For all C ⊆ N, ∅ < E(C)

2. (Safety) For all C ⊆ N, O ∈ E(C)

3. (N-maximality) For all X ⊆ O , if X ∈ E(N) then X < E(∅)

4. (Outcome-monotonicity) For all X ⊆ X ′ ⊆ O , and C ⊆ N, if
X ∈ E(C) then X ′ ∈ E(C)

5. (Superadditivity) For all subsets X1,X2 of O and sets of
agents C1,C2, if C1 ∩ C2 = ∅, X1 ∈ E(C1) and X2 ∈ E(C2),
then X1 ∩ X2 ∈ E(C1 ∪ C2)
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4. (Outcome-monotonicity) [C](ϕ ∧ ψ)→ ([C]ϕ ∧ [C]ψ) asdf
asdf asdf asdf asdf asdf asdfasdf asdf

5. (Superadditivity) ([C1]ϕ1 ∧ [C2]ϕ2)→ [C1 ∪ C2](ϕ1 ∧ ϕ2),
where C1 ∩C2 = ∅ asdf asdf as df asd fa sdf asdf asdf asdf
asdf asdf asdfasdf asdf
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The Broader Logical Landscape

I Relational Models
I Topological Models
I n-ary Relational Structures
I Plausibility Structures
I First-Order Logic
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From Kripke Frames to Neighborhood Frames
Let R ⊆W ×W , define a map R→ : W → ℘W :

for each w ∈W , let R→(w) = {v | wRv}
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Definition
Given a relation R on a set W and a state w ∈W . A set X ⊆W
is R-necessary at w if R→(w) ⊆ X .
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From Kripke Frames to Neighborhood Frames
Let R ⊆W ×W , define a map R→ : W → ℘W :

for each w ∈W , let R→(w) = {v | wRv}

Let NR
w be the set of sets that are R-necessary at w:

N
R
w = {X | R→(w) ⊆ X }

Lemma
Let R be a relation on W. Then for each w ∈W, NR

w is
augmented.
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From Kripke Frames to Neighborhood Frames

Properties of R are reflected in NR
w :

I If R is reflexive, then for each w ∈W , w ∈ ∩Nw

I If R is transitive then for each w ∈W , if X ∈ Nw , then
{v | X ∈ Nv } ∈ Nw .
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From Neighborhood Frames to Kripke Frames

Theorem
I Let 〈W ,R〉 be a relational frame. Then there is an

equivalent augmented neighborhood frame.

I Let 〈W ,N〉 be an augmented neighborhood frame. Then
there is an equivalent relational frame.

Theorem
I Let 〈W ,R〉 be a relational frame. Then there is an

equivalent augmented neighborhood frame.

I Let 〈W ,N〉 be an augmented neighborhood frame. Then
there is an equivalent relational frame.

for all X ⊆W , X ∈ N(w) iff X ∈ NR
w .

Theorem

X Let 〈W ,R〉 be a relational frame. Then there is an
equivalent augmented neighborhood frame.

I Let 〈W ,N〉 be an augmented neighborhood frame. Then
there is an equivalent relational frame.

Proof.
For each w ∈W , let N(w) = NR

w . �

Theorem
I Let 〈W ,R〉 be a relational frame. Then there is an

equivalent augmented neighborhood frame.

X Let 〈W ,N〉 be an augmented neighborhood frame. Then
there is an equivalent relational frame.

Proof.
For each w, v ∈W , wRNv iff v ∈ ∩N(w). �
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Core Theory

X Neighborhood Semantics in the Broader Logical
Landscape

I Bisimulation
I Completeness, Decidability, Complexity
I Incompleteness
I Relation with Relational Semantics
I Model Theory
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Useful Fact

Theorem (Uniform Substitution)
The following rule can be derived in E

ψ↔ ψ′

ϕ↔ ϕ[ψ/ψ′]
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Interesting Fact

Each of K , M and C are logically independent:

I EC 0 K
I EM 0 K
I EMCN ` K
I EK 0 M
I EK 0 C
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Expressive Power and Invariance
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M. Pauly. Bisimulation for Non-normal Modal Logic. Manuscript, 1999.

H. Hansen. Monotonic Modal Logic. ILLC, Masters Thesis, 2003.
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Monotonic Bisimulation

Suppose thatM = 〈W ,N,V〉 andM′ = 〈W ′,N′,V ′〉 are two
monotonic neighborhood models. A relation Z ⊆W ×W ′ is a
monotonic bisimulation provided that, whenever wZw′:

Atomic harmony: for each p ∈ At, w ∈ V(p) iff w′ ∈ V ′(p).

Zig: If w N X then there is an X ′ ⊆W ′ such that w′ N′ X ′

and ∀x′ ∈ X ′, ∃x ∈ X such that x Z x′.

Zag: If w′ N′ X ′ then there is an X ⊆W such that w N X
and ∀x ∈ X , ∃x′ ∈ X ′ such that x Z x′.

WriteM,w ↔M′,w′ when there is a monotonic bisimulation
Z ⊆ dom(M) × dom(M′) such that w Z w′.
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Proposition. IfM is a monotonic model,M,w ↔M′,w′

impliesM,w ≡LM′,w′.
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Locally Core-Finite Models

Suppose that F is a monotonic collection of subsets of W . The
non-monotonic core, denoted F nc , is a subset of F defined
as follows:

F
nc = {X | X ∈ F and for all X ′ ⊆W , if X ′ ⊆ X , then X ′ < F }.

A monotonic collection of sets F is core-complete provided for
all X ∈ F , there exists a Y ∈ F nc such that Y ⊆ X .

Question: Is every monotonic collection core-complete?
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Locally Core-Finite Models

A neighborhood modelM = 〈W ,N,V〉 is locally core-finite
provided thatM is core-complete and for each w ∈W , Nnc(w)
is finite, and for all X ∈ Nnc(w), X is finite.
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Proposition. Suppose thatM = 〈W ,N,V〉 and
M
′ = 〈W ′,N′,V ′〉 are monotonic, locally core-finite models.

Then, for all w ∈W , w′ ∈W ′,M,w ≡LM′,w′ iff
M,w ↔M′,w′.
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Do monotonic bisimulations work when we drop monotonicity?
No!
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w1

{w1}

w2

M

V(p) = {w1,w2}

v1

{v1}

M
′

V ′(p) = {v1}

Z
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Bounded Morphisms

IfM1 = 〈W1,N1,V1〉 andM2 = 〈W2,N2,V2〉 are two
neighborhood models, and f : W1 →W2 is a function, then f is
a (frame) bounded morphism if

for all X ⊆W2, we have f−1[X ] ∈ N1(w) iff X ∈ N2(f(w));

and for all p ∈ At, and all w ∈W1: w ∈ V1(p) iff f(s) ∈ V2(p).

Lemma LetM1 = 〈W1,N1,V1〉 andM2 = 〈W2,N2,V2〉 be two
neighborhood models and f :M1 →M2 a bounded morphism.
For each modal formula ϕ ∈ L and state w ∈W1,M1,w |= ϕ iff
M2, f(w) |= ϕ.
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Behavioral Equivalence

Definition
Two points w1 fromM1 and w2 fromM2 are behaviorally
equivalent provided there is a neighborhood frame F and
bounded morphisms f : F1 → F and g : F2 → F such that
f(w1) = g(w2).
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w2w1 w3

{w2} ∅

M
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N

v
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Proposition. Suppose thatM = 〈W ,N,V〉 and
M
′ = 〈W ′,N′,V ′〉 are two neighborhood models. If states

w ∈W and w′ ∈W ′ are behaviorally equivalent, then for all
ϕ ∈ L,M,w |= ϕ iffM′,w′ |= ϕ.
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Disjoint Union

LetM1 = 〈W1,N1,V1〉 andM2 = 〈W2,N2,V2〉 be two
neighborhood models. The disjoint union ofM1 andM2 is
the neighborhood modelM1 +M2 = 〈W1 + W2,N,V〉 where
for all p ∈ At, V(p) = V1(p) ∪ V2(p); and for i = 1,2,

for all X ⊆W1 + W2, and w ∈Wi , X ∈ N(w) iff X ∩Wi ∈ Ni(w).

Proposition. For all ϕ ∈ L, for i = 1,2, if w ∈Wi , then
M1 +M2,w |= ϕ iffMi ,w |= ϕ.

Fact. The universal modality is not definable in the basic modal
language.
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Core Theory

X Neighborhood Semantics in the Broader Logical
Landscape

X Bisimulations
I Completeness, Decidability, Complexity
I Incompleteness
I Relation with Relational Semantics
I Model Theory
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Suppose that Γ is a set of formulas and F is a class of
neighborhood frames. A formula ϕ ∈ L is a semantic
consequence with respect to F of Γ, denoted Γ |=F ϕ, provided
for each modelM = 〈W ,N,V〉 based on a frame from F (i.e.,
〈W ,N〉 ∈ F), for each w ∈W , ifM,w |= Γ, thenM,w |= ϕ.
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Some Notation

I A formula ϕ ∈ L is valid in F (|=F ϕ) if for each F ∈ F,
F |= ϕ.

I We say that a logic L is sound with respect to F, provided
`L ϕ implies |=F ϕ.

I A logic L is weakly complete with respect to a class of
frames F, if |=F ϕ implies `L ϕ.

I A logic L is strongly complete with respect to a class of
frames F, if for each set of formulas Γ, Γ |=F ϕ implies
Γ `L ϕ.
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A set of formulas Γ is called a maximally consistent set
provided Γ is a consistent set of formulas and for all formulas
ϕ ∈ L, either ϕ ∈ Γ or ¬ϕ ∈ Γ.

Let ML be the set of L-maximally consistent sets of formulas.

The L-proof set of ϕ ∈ L is |ϕ|L = {Γ | ϕ ∈ Γ}.
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Let L be a logic and ϕ,ψ ∈ L. Then

1. |ϕ ∧ ψ|L = |ϕ|L ∩ |ψ|L
2. |¬ϕ|L = ML − |ϕ|L
3. |ϕ ∨ ψ|L = |ϕ|L ∪ |ψ|L
4. |ϕ|L ⊆ |ψ|L iff `L ϕ→ ψ

5. |ϕ|L = |ψ|L iff `L ϕ↔ ψ

6. For any maximally L-consistent set Γ, if ϕ ∈ Γ and
ϕ→ ψ ∈ Γ, then ψ ∈ Γ

7. For any maximally L-consistent set Γ, If `L ϕ, then ϕ ∈ Γ
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Lindenbaum’s Lemma. For any consistent set of formulas Γ,
there exists a maximally consistent set Γ′ such that Γ ⊆ Γ′.
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Canonical Model

Definition
A neighborhood modelM = 〈W ,N,V〉 is canonical for L
provided
I W = { maximally L-consistent sets }

= ML

I for all ϕ ∈ L and Γ ∈W , |ϕ|L ∈ N(Γ) iff �ϕ ∈ Γ

I for all p ∈ At, V(p) = |p|L
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Examples of Canonical Models

M
min
L = 〈ML,Nmin

L ,VL〉, where for each Γ ∈ ML,
Nmin

L (Γ) = {|ϕ|L | �ϕ ∈ Γ}.

Let PL = {|ϕ|L | ϕ ∈ L} be the set of all proof sets.

M
max
L = 〈ML,Nmax

L ,VL〉, where for each Γ ∈ ML,
Nmax

L (Γ) = Nmin
L (Γ) ∪ {X | X ⊆ ML,X < PL}
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The canonical model works...

Lemma
For any logic L containing the rule RE, if NL : ML → ℘(℘(ML))
is a function such that for each Γ ∈ ML, |ϕ|L ∈ NL(Γ) iff �ϕ ∈ Γ.
Then if |ϕ|L ∈ NL(Γ) and |ϕ|L = |ψ|L, then �ψ ∈ Γ.

Lemma (Truth Lemma)
For any consistent classical modal logic L and any consistent
formula ϕ, ifM is canonical for L,

[[ϕ]]M = |ϕ|L
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The Proofs

Theorem
The logic E is sound and strongly complete with respect to the
class of all neighborhood frames.

Lemma
If C ∈ L, then 〈ML,Nmin

L 〉 is closed under finite intersections.

Theorem
The logic EC is sound and strongly complete with respect to the
class of neighborhood frames that are closed under
intersections.
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The Proofs

Fact: 〈MEM,Nmin
EM 〉 is not closed under supersets.

Lemma
Suppose thatM = sup(Mmin

EM ). ThenM is canonical for EM.

Theorem
The logic EM is sound and strongly complete with respect to
the class of supplemented frames.
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The Proofs

Theorem
The logic K is sound and strongly complete with respect to the
class of filters.

Theorem
The logic K is sound and strongly complete with respect to the
class of augmented frames.
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The Normal Situation

The smallest normal modal logic K consists of
PC Your favorite axioms of PC

K �(ϕ→ ψ)→ �ϕ→ �ψ

Nec
` ϕ
�ϕ

MP
` ϕ→ ψ ` ϕ

ψ

Theorem: K + �ϕ→ ϕ+ �ϕ→ ��ϕ is sound and strongly
complete with respect to the class of all reflexive and transitive
Kripke frames.

Eric Pacuit 87



The Normal Situation

The smallest normal modal logic K consists of
PC Your favorite axioms of PC

K �(ϕ→ ψ)→ �ϕ→ �ψ

Nec
` ϕ
�ϕ

MP
` ϕ→ ψ ` ϕ

ψ

Theorem: K is sound and strongly complete with respect to the
class of all Kripke frames.to the class of all reflexive and
transitive Kripke frames.

Eric Pacuit 87



The Normal Situation

The smallest normal modal logic K consists of
PC Your favorite axioms of PC

K �(ϕ→ ψ)→ �ϕ→ �ψ

Nec
` ϕ
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Theorem: For all Γ ⊆ L, Γ `K ϕ iff Γ |= ϕ.a;ldkf ;las jdf;lkaj sd;flk
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A logic L is neighborhood complete (resp. Kripke complete)
provided there is a class of neighborhood frames F (resp.
relational frames) such that
L = L(F) = {ϕ ∈ L | F |= ϕ for all F ∈ F}. Otherwise, the logic is
said to be neighborhood incomplete (resp. Kripke
incomplete).
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Incompleteness

There are (consistent) modal logics that are incomplete:

Theorem Let TMEQ be the following normal modal logic:
I K
I �ϕ→ ϕ

I �^ϕ→ ^�ϕ

I ^(^ϕ ∧ �ψ)→ �(^ϕ ∨ �ϕ)

I (^ϕ ∧ �(ϕ→ �ϕ))→ ϕ

There is no class of frames validating precisely the formulas in
TMEQ.

J. van Benthem. Two Simple Incomplete Modal Logics. Theoria
(1978).
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Incompleteness?

Are all modal logics complete with respect to some class of
neighborhood frames?

No
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Incompleteness
Martin Gerson. The Inadequacy of Neighbourhood Semantics for
Modal Logic. Journal of Symbolic Logic (1975).

There are two logics L and L′ that are incomplete with respect
to neighborhood semantics.
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Incompleteness
Martin Gerson. The Inadequacy of Neighbourhood Semantics for
Modal Logic. Journal of Symbolic Logic (1975).

There are two logics L and L′ that are incomplete with respect
to neighborhood semantics.

(there are formulas ϕ and ϕ′ that are valid in the class of
frames for L and L′ respectively, but ϕ and ϕ′ are not deducible
in the respective logics).
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Incompleteness
Martin Gerson. The Inadequacy of Neighbourhood Semantics for
Modal Logic. Journal of Symbolic Logic (1975).

There are two logics L and L′ that are incomplete with respect
to neighborhood semantics.

L is between T and S4

L′ is above S4 (adapts Fine’s incomplete logic)
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Ai = �(qi → r) (i = 1,2)
Bi = �(r → ^qi) (i = 1,2)
C1 = �¬(q1 ∧ q2)

A = r ∧ �p ∧ ¬��p ∧ A1 ∧ A2 ∧ B1 ∧ B2∧

C1 → ^(r ∧ �(r → (q1 ∨ q2))

D = (p ∧^^q)→ (^q ∨^^(q ∧^p))

E = (�p ∧ ¬��p)→ ^(��p ∧ ¬���p)

F = �p → ��p

Let L be the logic obtained by adding A , D, and E as additional
axioms to T.

Theorem. (Gerson) The formula F is valid in all neighborhood
frames for L, but it is not provable in L.
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Comparing Relational and Neighborhood Semantics
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Comparing Relational and Neighborhood Semantics

Fact: If a (normal) modal logic is complete with respect to
some class of relational frames then it is complete with respect
to some class of neighborhood frames.

What about the converse?

Are there normal modal logics that are incomplete with respect
to relational semantics, but complete with respect to
neighborhood semantics?
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What about the converse?

Are there normal modal logics that are incomplete with respect
to relational semantics, but complete with respect to
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Comparing Relational and Neighborhood Semantics
Neighborhood completeness does not imply Kripke
completeness

I extension of K

D. Gabbay. A normal logic that is complete for neighborhood frames
but not for Kripke frames. Theoria (1975).

I extension of T

M. Gerson. A Neighbourhood frame for T with no equivalent relational
frame. Zeitschr. J. Math. Logik und Grundlagen (1976).

I extension of S4

M. Gerson. An Extension of S4 Complete for the Neighbourhood
Semantics but Incomplete for the Relational Semantics. Studia Logica
(1975).
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W. Holliday and T. Litak. Complete Additivity and Modal Incomplete-
ness. The Review of Symbolic Logic.

L. Chagrova. On the Degree of Neighborhood Incompleteness of Nor-
mal Modal Logics. AiML 1 (1998).

V. Shehtman. On Strong Neighbourhood Completeness of Modal and
Intermediate Propositional Logics (Part I). AiML 1 (1998).

T. Litak. Modal Incompleteness Revisited. Studia Logica (2004).
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Recovering Completeness

Definition
A general neighborhood frame is a tuple Fg = 〈W ,N,A〉,
where 〈W ,N〉 is a neighborhood frame and A is a collection of
subsets of W closed under intersections, complements, and the
mN operator.

Eric Pacuit 95



Recovering Completeness

Definition
A general neighborhood frame is a tuple Fg = 〈W ,N,A〉,
where 〈W ,N〉 is a neighborhood frame and A is a collection of
subsets of W closed under intersections, complements, and the
mN operator.

A valuation V : At→ ℘(W) is admissible for a general frame
〈W ,N,A〉 if for each p ∈ At, V(p) ∈ A.
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mN operator.

A valuation V : At→ ℘(W) is admissible for a general frame
〈W ,N,A〉 if for each p ∈ At, V(p) ∈ A.

Definition
Suppose that Fg = 〈W ,N,A〉 is a general neighborhood frame.
A general modal based on Fg is a tupleMg = 〈W ,N,A,V〉
where V is an admissible valuation.
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Recovering Completeness

Definition
A general neighborhood frame is a tuple Fg = 〈W ,N,A〉,
where 〈W ,N〉 is a neighborhood frame and A is a collection of
subsets of W closed under intersections, complements, and the
mN operator.

Definition
Suppose that Fg = 〈W ,N,A〉 is a general neighborhood frame.
A general modal based on Fg is a tupleMg = 〈W ,N,A,V〉
where V is an admissible valuation.

Lemma
LetMg be an general neighborhood model. Then for each
ϕ ∈ L, [[ϕ]]Mg ∈ A.
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Recovering Completeness

Definition
A general neighborhood frame is a tuple Fg = 〈W ,N,A〉,
where 〈W ,N〉 is a neighborhood frame and A is a collection of
subsets of W closed under intersections, complements, and the
mN operator.

Lemma
Let L be any logic extending E. Then the general canonical
frame validates L (Fg

L |= L).

Corollary
Any modal logic extending E is strongly complete with respect
to some class of general frames.
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Summary

For any modal logic L:
I If L is Kripke complete, then it is neighborhood complete
I L is complete with respect to its class of general frames

There are modal logics showing that
I neighborhood completeness does not imply Kripke

completeness
I algebraic completeness does not imply neighborhood

completeness
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