PSI-BLAST Position-Specific Iterated BLAST

Stephen F. Altschul

National Center for Biotechnology Information National Library of Medicine National Institutes of Health

Protein and DNA "Profiles"

The idea behind DNA and protein "profiles" has a long history. These structures are also called "position-specific score matrices" or "PSSMs", and they are closely related to "Hidden Markov Models" or "HMMs".

McLachlan, A.D. (1977) "Analysis of periodic patterns in amino acid sequences: collagen." Biopolymers 16:1271-1297.

Stormo, G.D., *et al.* (1982) "Use of the 'perceptron' algorithm to distinguish translational sites in *E. coli*." *Nucl. Acids Res.* **10**:2997-3011.

McLachlan, A.D. (1983) "Analysis of gene duplication repeats in the myosin rod." J. Mol. Biol. 169:15-30.

Staden, R. (1984) "Computer methods to locate signals in nucleic acid sequences." Nucl. Acids Res. 12:505-19.

Schneider, T.S., et al. (1986) "Information content of binding sites on nucleotide sequences." J. Mol. Biol. 188:415-431.

Taylor, W.R. (1986) "Identification of protein sequence homology by consensus template alignment." *J. Mol. Biol.* **188**:233-258.

Berg, O.G. & von Hippel, P.H. (1987) "Selection of DNA binding sites by regulatory proteins. Statistical-mechanical theory and application to operators and promoters." *J. Mol. Biol.* **193**:723-750.

Dodd, I.B. & Egan, J.B. (1987) "Systematic method for the detection of potential lambda cro-like DNA-binding regions in proteins." *J. Mol. Biol.* **194**:557-564.

Gribskov, M., *et al.* (1987) "Profile analysis: detection of distantly related proteins." *Proc. Natl. Acad. Sci. USA* **84**:4355-4358.

Patthy, L. (1987) "Detecting homology of distantly related proteins with consensus sequences." *J. Mol. Biol.* **198**:567-577.

Structure of a Profile

A profile of length *L* is an $L \times 20$ (for proteins) or $L \times 4$ (for DNA) array $s_{i,j}$. An element $s_{i,j}$ of this array represents the score for aligning letter *j* at position *i*.

A profile can be aligned to an individual sequence in exactly the same way that a sequence can be, using the Needleman-Wunsch or Smith-Waterman algorithm.

The scores of a profile may be derived from a multiple sequence alignment in a variety of ways.

Steps in Profile Analysis

1) Select a set of related sequences, often by running a database search with a query sequence.

- 2) Construct a multiple sequence alignment of the sequences.
- 3) Derive a profile from the multiple sequence alignment.
- 4) Compare the profile to a database of sequences.
- 5) Iterate, by returning to step 1).

In the mid-1990s, this process could involve running as many as four separate programs, some of which were fairly slow (i.e. steps 2 and 4 above). It generally required a fair amount of expertise, and was not accessible to most biologists.

Can Profile Analysis be Automated?

Requirements:

A way to collect a set of sequences. Use the output of a BLAST search.
A way to define the length of a profile.
A *fast* way to construct a multiple alignment.
A way to derive profile scores from the multiple alignment.
A *fast* way to search the database with a profile. Generalize BLAST.
For iteration, a way to assess the significance of profile-sequence alignments.

PSI-BLAST strategy:

Keep approach simple at first; consider refinements later.

Altschul, S.F., *et al.* (1997) "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs," *Nucleic Acids Res.* **25**:3389-3402.

Profile Length

Here is one alignment returned by a BLAST protein database search:

>sp|Q99728.2|BARD1_HUMAN
Length=777

		.1 bits (126), Expect = 3e-07, Method: Composition-based state	S.
Ident	ities	= 32/111 (29%), Positives = 55/111 (50%), Gaps = 15/111 (14%)	
Query	24	THVVMKTDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKERKMLNEHDFEVRGDVVNGR	83
		THVV+ DA + TLK LGI G W++ + WV ++ + E +E+	
Sbjct	605	THVVVPGDAVQSTLKCMLGILNGCWILKFEWVKACLRRKVCEQEEKYEIP	654
Query	84	NHQGPKRARESQDRKIFRGLEICCYGPFTNMPTDQLEWMVQLCGASVV 131	
		+GP+R+R ++++ K+F G +G F + P D L +V G ++	
Sbjct	655	EGPRRSRLNREQLLPKLFDGCYFYLWGTFKHHPKDNLIKLVTAGGGQIL 703	

Some alignments will cover essentially the whole query sequence; some just small regions. Different alignments will have insertions and deletions in different places.

How long should the profile be, and what should each "column" correspond to?

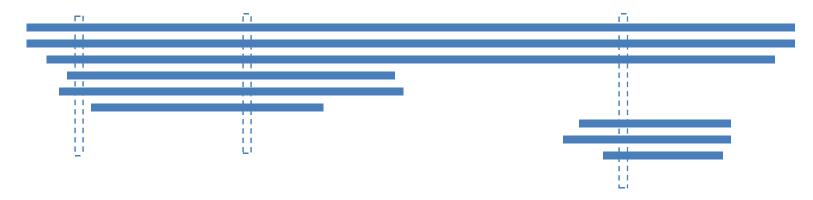
PSI-BLAST Profile Length

The profile constructed by PSI-BLAST has exactly the same length as the query sequence. Insertions with respect to the query are simply ignored.

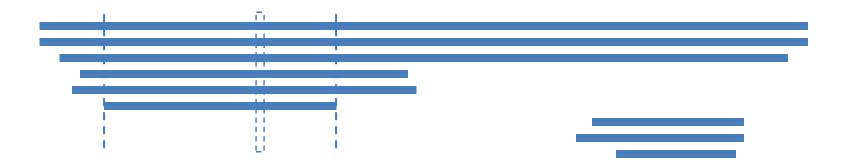
>sp|Q99728.2|BARD1_HUMAN
Length=777

Score	= 53	.1 bits (126), Expect = 3e-07, Method: Composition-based stats.
Ident	ities	= 32/111 (29%), Positives = 55/111 (50%), Gaps = 15/111 (14%)
Query	24	THVVMKTDAEFVCERTLKYFLGIAGGKWVVSYFWVTQSIKERKMLNEHDFEVRGDVVNGR 83
		THVV+ DA + TLK LGI G W++ + WV ++ + E +E+
Sbjct	605	THVVVPGDAVQSTLKCMLGILNGCWILKFEWVKACLRRKVCEQEEKYEIP 654
Query	84	NHQGPKRARESQDRKIFRGLEICCYGPFTNMPTDQLEWMVQLCGASVV 131
		+GP+R+R ++++ K+F G +G F + P D L +V G ++
Sbjct	655	EGPRRSRLNREQLLPKLFDGCYFYLWGTFKHHPKDNLIKLVTAGGGQIL 703
		T
		These aligned letters are ignored

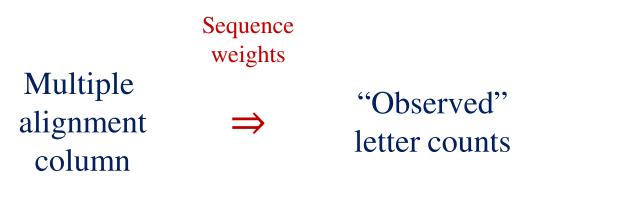
These aligned letters are ignored.


Multiple Alignment

"True" multiple alignment algorithms generally try to take account of all sequences simultaneously when constructing a multiple alignment.


For speed and simplicity, PSI-BLAST simply collapses the pairwise alignments produced by BLAST into a multiple alignment, with each profile column corresponding to a single letter from the query sequence.

Sequence Weights

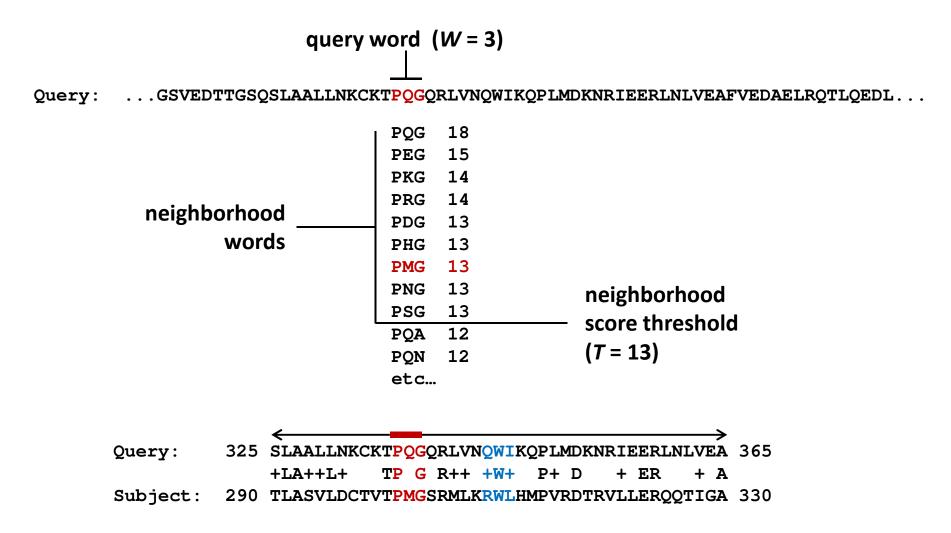


Different columns involve different sets of sequences. Thus the sequence weights may very from one profile column to another.

For a given column \mathcal{C} , consider only those sequences that participate in \mathcal{C} , and calculate sequence weights using the maximal extent of the subalignment containing all those sequences.

The Construction of Profile Scores

 \downarrow


Data-dependent pseudocounts

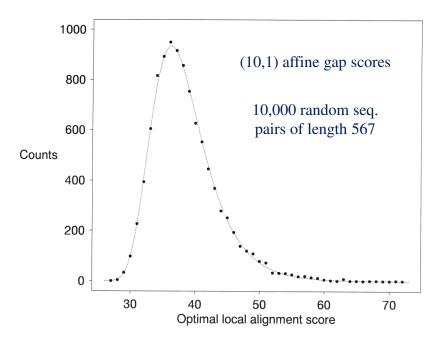
Log-odds scores

¢

Predicted amino acid frequencies

The BLAST Algorithm Applied to Profiles

With the query sequence replaced by a profile, one can still construct a list of neighborhood words, and proceed exactly as before.


PSI-BLAST Statistics

<u>Problem</u>: By random simulation, we can estimate the statistical parameters λ_g and K_g for gapped profile-sequence alignment, but it takes too much time to do this for the new profile generated by each PSI-BLAST iteration.

<u>However</u>: By extending Karlin's theory to profiles, we can calculate analytically, and rapidly, the ungapped statistical parameters λ_u and K_u for profile-sequence comparison.

<u>Hypothesis</u>: If particular gap costs transform a specific λ_u to λ_g for sequence-sequence comparison, they will do approximately the same for profile-sequence comparison.

Solution: Scale each new profile so that it has the same λ_u as a standard substitution matrix, such as BLOSUM-62. (This is fast, by Karlin's theory.) Assume the precomputed λ_g for sequence-sequence comparison is valid for profile-sequence comparison. PSI-BLAST profile derived from 128 significant local alignments from the comparison of inflenza A virus hemagglutinin precursor to SWISS-PROT.

Scoring system	λ _u	$\hat{\lambda}_g$	K _u	\hat{K}_g
BLOSUM-62 matrix	0.3176	0.252	0.134	0.035
PSI-BLAST matrix	0.3175	0.254 (0.252)	0.154	0.040 (0.040)

Accuracy of PSI-BLAST Statistics

Protein family	SWISS-PROT accession number of query	Low <i>E</i> -value	seqs	ber of . with value ≤ 10
Serine protease	P00762	0.94	1	8
Serine protease inhibitor	P01008	1.5	Ō	9
Ras	P01111	1.1	0	9
Globin	P02232	8.2	0	2
Hemagglutinin	P03435	0.87	1	8
Interferon α	P05013	0.11	2	11
Alcohol dehydrogenase	P07327	1.5	0	9
Histocompatibility antigen	P10318	0.0031	2	6
Cytochrome P450	P10635	0.46	1	15
Glutathione transferase	P14942	0.30	2	9
H ⁺ -transporting ATP synthase	P20705	0.79	2	10
Average (median or mean)		0.87	1.0	8.7

Sequences compared to a shuffled version of SWISS-PROT

PSI-BLAST Search Results

Protein family	Query	Smith-	Original	Gapped	PSI-
		Waterman	BLAST	BLAST	BLAST
Serine protease	P00762	275	273	275	286
Serine protease inhibitor	P01008	108	105	108	111
Ras	P01111	255	249	252	375
Globin	P02232	28	26	28	623
Hemagglutinin	P03435	128	114	128	130
Interferon α	P05013	53	53	53	53
Alcohol dehydrogenase	P07327	138	128	137	160
Histocompatibility antigen	P10318	262	241	261	338
Cytochrome P450	P10635	211	197	211	224
Glutathione transferase	P14942	83	79	81	142
H ⁺ -transporting ATP synthase	P20705	198	191	197	207
Normalized running tim	e	36	1.0	0.34	0.87

Number of SWISS-PROT sequences with an *E*-value ≤ 0.01 . By SWISS-PROT annotation, all but one are true positives.

Running PSI-BLAST

NCBI	Ψ-BLAST	Entrez ?

<u>Reference:</u> Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389–3402.

Database	ا ہے۔ m
	And an experimental statements and an experimental second se

The amino acid query sequence is filtered for low complexity regions by default.

Enter here your amino acid sequence as Sequence in FASTA format 🔟 Submit Query	Contraction and
>BRCA1 (C-terminus) RMSMVVSGLTPEEFMLVYKFARKHHITLTNLITEETTHVVMKTDAEFVCERTLKYFLGIA GGKWVVSYFWVTQSIKERKMLNEHDFEVRGDVVNGRNHQGPKRARESQDRKIFRGLEICC YGPFTNMPTDQLEWMVQLCGASVVKELSSFTLGTGVHPIVVVQFDAWTEDNGFHAIGQMC EAPVVTREWVLDSVALYQCQELDTYLIPQIPHSHY	;
2	

Please read about FASTA format description

Advanced options for the BLAST server:

Expect value for inclusion in PSI-BLAST iteration 1 0.001

<u>Matrix</u>	<u>Gap existence cost</u>	<u>Per residue gap cost</u>	<u>Lambda ratio</u>	
PAM30	9	1 1	0.87	13
PAM70	10	1	0.87	
BLOSUM80	10	1	0.87	
BLOSUM62	11	1	0.85 default	
BLOSUM45	14	2	0.87	

Results of Initial BLAST Run

Sequences with E-value BETTER than threshold

	Score	E
Sequences producing significant alignments:	(bits)	Value
🗑 gi 2218154 (AFOO5O68) breast and ovarian cancer susceptibility	<u>455</u>	e-128
🛪 <u>spip38398 brc1_human</u> breast cancer type 1 susceptibility protei	<u>455</u>	e-128
🖗 gi 1546074 (U68041) breast and ovarian cancer susceptibility pr	<u>455</u>	e-128
🗑 gi 1498737 (U64805) Brca1-delta11b [Homo sapiens]	<u>455</u>	e-128
🛪 <u>pir A54652</u> breast/ovarian cancer susceptibility protein BRCA1	<u>455</u>	e-128
🛪 <u>spi095153 BRC1_CANFA</u> BREAST CANCER TYPE 1 SUSCEPTIBILITY PROTEI	<u>410</u>	e-114
🛚 <u>gi 2695691</u> (AF036760) BRCA1 [Rattus norvegicus]	<u>299</u>	1e-80
🕱 <u>gi 969172</u> (U32446) breast/ovarian cancer susceptibility protein	<u>298</u>	2e-80
🕅 gi 1049263 (U36475) breast and ovarian cancer susceptibility pr	<u>298</u>	2e-80
🛪 <u>pir 149350</u> breast/ovarian cancer susceptibility homolog - mous	<u>296</u>	7e-80
🛪 <u>spip48754 BRC1_MOUSE</u> BREAST CANCER TYPE 1 SUSCEPTIBILITY PROTEI	<u>296</u>	7e-80
🛪 gnl PID e1253303 (ALO21960) putative protein [Arabidopsis thali	<u> 79 </u>	2e-14
🕅 gnl PID e293319 (Y08757) BRCA1 [Homo sapiens]	62	2e-09
🛪 gi 1710175 (U76638) BRCA1-associated RING domain protein [Homo	<u>53</u>	1e-06
🕅 gi 2828068 (AF038042) BRCA1-associated RING domain protein [Hom	<u> 53 </u>	1e-06

Run PSI-Blast iteration 1

Sequences with E-value WORSE than threshold

🔄 <u>gi 2104545</u> (AFO01308) T10M13.12 [Arabidopsis thaliana]	<u> 38 </u>	0.038
🔄 gnl PID(e250177 (Z75540) F37D6.1 [Caenorhabditis elegans]	<u> </u>	0.19
gnl PID e239377 (Z72509) F32G8.4 [Caenorhabditis elegans]	34_	0.97
🖄 <u>sp/Q12888/P531_HUMAN</u> _P53-BINDING PROTEIN 53BP1 >gi 2135874 pir	33	1.3
🕘 gnl PID(e1217227) (Z81531) F36D3.5 [Caenorhabditis elegans]	_31_	6.4

Results of First PSI-BLAST Iteration

Sequences producing significant alignments:	Score (bits)	E) Value
🖗 🛪 <u>spip38398/brc1_human</u> breast cancer type 1 susceptibility protei.	<u>376</u>	e-104
🖗 gi 2218154 (AF005068) breast and ovarian cancer susceptibility .	<u>376</u>	e-104
pir//A54652 breast/ovarian cancer susceptibility protein BRCA1 .	<u>376</u>	e-104
🍳 🗑 gi 1498737 (U64805) Brca1-delta11b [Homo sapiens]	<u>376</u>	e-104
🖗 🗑 gi 1546074 (U68041) breast and ovarian cancer susceptibility pr.	<u>376</u>	e-104
🖓 🖗 <u>spi095153 brc1_canfa</u> breast cancer type 1 susceptibility protei.	<u>355</u>	9e-98
🍳 🕱 gi 2695691 (AF036760) BRCA1 [Rattus norvegicus]	<u>323</u>	7e-88
🎱 🖗 gi1969172 (U32446) breast/ovarian cancer susceptibility protein.	<u>321</u>	2e-87
🍳 🕅 gil1049263 (U36475) breast and ovarian cancer susceptibility pr.	<u>321</u>	2e-87
🖉 🛪 <u>spip48754 brc1_mouse</u> breast cancer type 1 susceptibility protei.	<u>320</u>	4e-87
🖗 🖗 <u>pir 149350</u> breast/ovarian cancer susceptibility homolog - mous.	<u>320</u>	6e-87
🎱 🕱 gnl PID e1253303 (AL021960) putative protein [Arabidopsis thali.	<u>230</u>	7e-60
🖗 🙀 gi 1710175 (U76638) BRCA1-associated RING domain protein [Homo .	<u>152</u>	1e-36
🏈 🕅 gil2828068 (AF038042) BRCA1-associated RING domain protein [Hom.	<u>152</u>	1e-36
🎯 🖗 gnl PID e293319 (YO8757) BRCA1 [Homo sapiens]	<u>63</u>	2e-09
🐃 🕅 gi 2104545 (AF001308) T10M13.12 [Arabidopsis thaliana]	<u> </u>	4e-07

Run PSI-Blast iteration 2

Sequences with E-value WORSE than threshold

💮 gnl[PID[e281166] (Z81030) C01G10.1 [Caenorhabditis elegans]	42	0.004
gi1474200 (U00040) contains ANK motif repeats [Caenorhabditis e	_41	0.005
gi12702428 (AF038613) No definition line found [Caenorhabditis	41_	0.007
<u>spi012888 P531_HUMAN</u> P53-BINDING PROTEIN 53BP1 >gi 2135874 pir	40	0.015
📄 gnl PID d1012153 (D79992) similar to Drosophila photoreceptor c	40	0,015
gnl PID e1217227 (Z81531) F36D3.5 [Caenorhabditis elegans]	40	0.015
<pre>gil2565046 (U80735) CAGF28 [Homo sapiens]</pre>	<u> </u>	0.026
🔆 gil474199 (U00040) contains ANK-like repeats [Caenorhabditis el	<u>_38</u>	0.058
gnl PID e1187901 (Z81513) F26D2.b [Caenorhabditis elegans]	<u> </u>	0.058
gnl[PID[d1014079 (D87448) Similar to S.pombe -rad4+/cut5+produc	37	0.076
gnl{PID(e1188267 (Z83238) T08G3.i [Caenorhabditis elegans]	<u> </u>	0.100
gil470351 (U00044) contains ANK motif repeats [Caenorhabditis e	36	0.22
BPI01033719097 SCHPO HYPOTHETICAL 98.4 KD PROTEIN C19G10.07 IN	<u>_36</u>	0.22

Results of Second PSI-BLAST Iteration

🖗 🛛 gil969172 (U32446) breast/ovarian cancer susceptibility prot-	ein <u>311</u>	3e-84
🔍 🏽 😨 gill049263 (U36475) breast and ovarian cancer susceptibility	pr <u>311</u>	3e-84
🖗 🖗 <u>spip48754 brc1_mouse</u> breast cancer type 1 susceptibility pro	TEI <u>309</u>	6e-84
🏽 🖗 <u>pir I49350</u> breast/ovarian cancer susceptibility homolog – m	ous <u>309</u>	8e-84
🎱 🖗 gnl PID e1253303 (AL021960) putative protein [Arabidopsis th	ali <u>217</u>	5e-56
🎯 🗑 gi 1710175 (U76638) BRCA1-associated RING domain protein [How	mo <u>199</u>	1e-50
🎱 🖗 gil2828068 (AF038042) BRCA1-associated RING domain protein []	Hom <u>199</u>	1e-50
🎯 🗑 gil2104545 (AFO01308) T10M13.12 [Arabidopsis thaliana]	<u>131</u>	4e-30
🎱 🛛 gnl PID e293319 (YO8757) BRCA1 [Homo sapiens]	63	2e-09
"" 🖗 gnl[PID]d1014079 (D87448) Similar to S.pombe -rad4+/cut5+prod	duc <u>49</u>	2e-05
🕬 🛛 🕼 🕅 🖓 🕅 🖓 🖓 📾 🖓 🖓 🖓 🕬 🖓 🖓 🖓 🖓 🖏 🖓 🖓 👘 🖓 👘 🕬 🕬 🕬 🖓 👘 🖓 👘 🖓 👘 🖓 👘 🖓 👘 🖓 👘 🖓 👘 🖓 👘 🖓 👘 🖓 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘 👘	45	3∈-04
🐃 🙀 gnl(PID)d1012153 (D79992) similar to Drosophila photorecepto:	rc <u>45</u>	5e-04
🐃 🛪 gnl PID e339166 (298850) hypothetical protein [Schizosacchard	omy <u>44</u>	8e-04
™₩ 🙀 <u>gil2702428</u> (AF038613) No definition line found [Caenorhabdit	is <u>44</u>	8e-04

Run PSI-Blast iteration 3

Sequences with E-value WORSE than threshold

🝸 <u>gnl PID e281166</u> (Z81030) C01G10.1 [Caenorhabditis elegans]	43	0.001
spl012888/P531_HUMAN_P53-BINDING PROTEIN 53BP1 >gi 2135874 pir	43	0.001
gi 2565046 (U80735) CAGF28 [Homo sapiens]	43	0.001
gi gi 474199 (UODO40) contains ANK-like repeats [Caenorhabditis el	43	0.002
🛯 gnl PID e1188267 (Z83238) TO8G3.i [Caenorhabditis elegans]	43	0.002
gnl PID e1187901 (281513) F26D2.b [Caenorhabditis elegans]	43	0.002
🖄 gnl PID e250177 (Z75540) F37D6.1 [Caenorhabditis elegans]	42	0.003
gi 2291148 (AF016418) contains similarity to ankyrin repeats [C	42	0.003
<u>gi 470351</u> (U00044) contains ANK motif repeats [Caenorhabditis e	42	0.004
🔄 gi 474200 (UOOO40) contains ANK motif repeats [Caenorhabditis e	41	0.007
spip41882 ypt4_caeel hypothetical 127.3 kd protein F37a4.4 in c	<u> </u>	0.045
gi[2315657 (AF016670) No definition line found [Caenorhabditis	<u>_38</u>	0.060
spi0103371YD97_SCHPO HYPOTHETICAL 98.4 KD PROTEIN C19G10.07 IN	_37	0.10
gi 2315659 (AF016670) contains similarity to ankyrin repeats [C	37	0.10
🖄 gnl PID e349328 (Z99265) TO5F1B.3 [Caenorhabditis elegans]	35	0.39
gnl PID e1247202 (Z81586) T05F1.h [Caenorhabditis elegans]	<u> </u>	0.39
gnl PID e348523 (Z66495) C36A4.8 [Caenorhabditis elegans]	32	2.6

The Corruption of Profiles

PSI-BLAST *E*-values are calculated for the profiles PSI-BLAST produces, and can not be interpreted as referring to the original query sequence.

Once a sequence unrelated to the query is included in a PSI-BLAST multiple alignment, and thus in the construction of PSI-BLAST's profile, it will bring in many of its "friends" on the next iteration, and this process can snowball. Sequence weighting will exacerbate this process.

Profile corruption is a major problem for iterative approaches such as PSI-BLAST.

PSI-BLAST Refinements

Schäffer, A.A., *et al.* (2001) "Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements." *Nucleic Acids Res.* **29**:2994-3005.

Composition-based statistics;
Different treatment of indels in calculating predicted amino acid frequencies;
Optional use of Smith-Waterman algorithm in final stage;
Filter database sequences for low-complexity segments;
etc.

Altschul, S.F., *et al.* (2005) "Protein database searches using compositionally adjusted substitution matrices." *FEBS J.* **272**:5101-5109.

In the initial BLAST search, the adjustment of substitution matrices for use with sequences having non-standard amino composition.

Altschul, S.F., *et al.* (2009) "PSI-BLAST pseudocounts and the minimum description length principle." *Nucleic Acids Res.* **37**:815-824.

Refined calculation of the effective number of independent observations in a column; Number of pseudocounts dependent on column entropy.

Possible future development:

Sequence trimming to avoid the over-extension of true alignments; the problem was described in:

Gonzalez, M.W. & Pearson, W.R. (2010) "Homologous over-extension: a challenge for iterative similarity searches." *Nucleic Acids Res.* **38**:2177-2179.