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ABSTRACT

A new system for aligning whole genome sequences
is described. Using an efficient data structure called a
suffix tree, the system is able to rapidly align
sequences containing millions of nucleotides. Its use
is demonstrated on two strains of Mycobacterium
tuberculosis, on two less similar species of Mycoplasma
bacteria and on two syntenic sequences from human
chromosome 12 and mouse chromosome 6. In each
case it found an alignment of the input sequences, using
between 30 s and 2 min of computation time. From the
system output, information on single nucleotide
changes, translocations and homologous genes can
easily be extracted. Use of the algorithm should
facilitate analysis of syntenic chromosomal regions,
strain-to-strain comparisons, evolutionary comparisons
and genomic duplications.

INTRODUCTION

Since the first successful whole-genome shotgun sequence of
Haemophilus influenzae (1), the number of organisms whose
genomes have been completely sequenced has been increasing
rapidly each year. As the number and variety of these genomes
increase, it is becoming more common for a project to sequence
the genome of an organism that isvery closdly related to another
completed genome. For example, the genomes of Mycoplasma
genitalium (2) and Mycoplasma pneumoniae (3), the third and
fifth prokaryotic organismsto be completely sequenced, respect-
ively, are very closely related and share sequence homology
across large fractions of their genomes. More recently, there has
been tremendous scientificinterest in sequencing different strains
of the same bacteria. Two strains of Mycobacteriumtuberculosis,
H37Rv (4) and CDC1551 (R.D.Feischmann et al., manuscript in
preparation), and two strains of Chlamydia trachomatis, serovar
D (5) and mouse pneumonitis (Fraser et al., manuscript in
preparation), will be completely sequenced in the near future; in
each case one of thetwo strainsiscompleteand the other isnearly
s0. It is clear that the future will see an increasing number of
sequencing projects whose target is a strain or species that is
closaly related to an already-sequenced organism.

When the genome sequence of two closely related organisms
becomes available, one of the first questions researchers want to
ask is how the two genomes aign. There is a large body of
research, including many sophisticated algorithms, for aigning
two sequences. This vast literature cannot be cited here, but
important early work includes Needleman and Wunsch (6) and
Smith and Waterman (7) (for recent reviews see 8,9). The focus
of most prior research has been on comparing single proteins or
genomic DNA sequences containing a single gene. The existing
algorithmswork extremely well on thistask, but in most casesare
ineffectivein aligning entire genomes. The problem isreally one
of size: singlegene sequencesmay be aslong astensof thousands
of nucleotides, but whole genomes are usualy millions of
nucleotides or larger. When comparing a4 Mb sequence such as
M.tubercul osisto another 4 Mb sequence, many agorithmseither
run out of memory or take unacceptably long to complete. In
addition, previous agorithms were designed primarily to dis-
cover insertions, deletionsand point mutations, but not to look for
the kinds of large-scale changes that can be discovered in
whole-genome comparisons, such as differences in tandem
repeats and large scale reversals.

In this paper we describe a system for pairwise alignment and
comparison of very large scde DNA sequences. The agorithm
assumesthe sequences are closaly rdaed, and using thisassumption
can quickly compare sequences that are millions of nucleotides in
length. It will dso be able to compare entire chromosomes as large
as human chromosome 1 (i.e., severa hundred million basepairs),
once such sequences are available, and in the process identify dl
differences between two different individuas.

The system is specificaly designed to perform high resolution
comparison of genome-length sequences. It outputs a base-to-base
alignment of the input sequences, highlighting the exact differences
in the genomes. It will locate dl single nuclectide polymorphisms
(SNPs), large insarts, dgnificant repests, tandem repeats and
reversds, in addition to identifying the exact matches between the
genomes.

We have applied this system to the CDC1551 and H37Rv
strains of M.tuberculosis, to the two completed Mycoplasma
genomes, and to two relatively long (225 kb) syntenic sequences
from the human and mouse genomes. In the case of tuberculosis,
thestrainsarevery closely related, and the system wasvery useful
at pinpointing the SNPs and the relatively small number of
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significant insertions between these two genomes. (For the
context of this discussion, the term SNP is used to mean a
sequence that appears in both genomes with a difference of just
one base between the two copies. Such polymorphisms may or
may not represent mutationsthat occur inasignificant percentage
of the population.) In the second case, where the organisms are
much less closely related (differing by hundreds of thousands of
nucleotides), the system is nonethel ess able to align the genomes
precisely. We aso tested our system on even more distantly
related sequences by comparing asyntenic region fromthe mouse
and human genomes. The results of these comparisons are
described in the Results and Discussion.

In addition to dlowing for comparison between different
organisms, the system described here can dso be put to a different
use. At different stages of any large genomic sequencing project, the
assembled sequence will change as gaps are closed, sequencing
errors are corrected and additiond sequences are completed.
Because the finishing stage involves many individuds, it can be
difficult for a project leader (or any one person) to get a picture of
what has changed each time agenome isreassembled. The program
described here can compare two different versons of a genome a
different stages of sequencing and highlight precisdly what has
changed.

The output of the system gives a clear picture at the sequence
level of dl the differences between two genomes. (The code is
fredly available; contact the authors by email for details) To
present amore global picture, we have also developed agraphical
interface that allows a researcher to scroll aong the two genomes
being compared and zoom in on areas of interest. (See Figure 6 for
an example of what the tool displays.) The next sections describe
the computational techniques employed in the system, followed by
ademondtration of itsusein three different comparisons. complete
genomes of two strains of M.tuberculosis, complete genomes of
two related species of Mycoplasma, and related 225 kb regions
from mouse chromosome 6 and human chromosome 12.

THE CHALLENGE OF WHOLE GENOME ALIGNMENT

The standard agorithms for sequence dignment rely on ether
dynamic programming (7,10) or hashing techniques (8,11). Naive
versions of dynamic programming use O(n?) space and time
(where n is the length of the shorter of the two sequences being
compared), which makes computation simply unfeasible for
sequences of sze 24 Mb (such as the two M.tuberculosis
genomes). [For an input with size n, a function X is O(n?) if, for
aufficiently large n and for some constant C independent of n,
X< Cn2 Informaly stated, the O(n?) notation means that the
amount of space and time required for the computation isno more
than Cn2.] Hashing technicues operate faster on average, but they
involvea‘match and extend’ strategy, wherethe ‘extend’ part aso
takes O(n?) time. For dynamic programming, it is possble to
reduce the required space to O(n) by taking more time; this solves
thememory problem but still eaves one with an unacceptably dow
agorithm. Fagter dgorithms can be developed for specidized
purposes, such asarecent system for finding tandem repeats (12).
This repeat finder uses a k-tuple hashing algorithm and couplesit
with a stochastic pattern matching strategy.

More complex dynamic programming methods can be used for
dignment when the dignment error is expected to be low. For
example, one can dign two smilar sequences with a most E
differences (or errors) in time proportiona to E times the length of

the longer sequence. The Sm3 program (13) uses a linear time
agorithm that works well when the input sequences are highly
smilar; it runsvery fast even on very long sequences. Unfortunately,
this dass of dgorithms does not aways work for whole genome
alignments, since the ‘errors’ may include multiple large inserts on
the order of 10% or 10° nuclectides. As we demongtrate below, the
number of differences may be greater than 100 000 despite the fact
that the genomes (in this case M.genitaliumand M.pneumoniae) are
closdy related and can in fact be digned with one another.

Another system developed to alignlong sequencesissim?2 (14).
This system uses a BL AST-like hashing schemeto identify exact
k-mer matches, which are extended to maximal-length matches.
These maximal matches are then combined into loca aignment
chains by a dynamic programming step. In contrast, our
suffix-tree approach directly finds maxima matches that are
unique. These matches can then be easily ordered to form the
basis of an alignment that can span even very long mismatch
regions between the two input genomes.

The system described here was devel oped in response to our
own efforts as part of sequencing strain CDC1551 of M.tuber-
culosis, weredlized it was essential to describe al the differences
between CDC1551 and the recently completed H37Rv strain (4).
The well-known and widely used BLAST (15,16) and FASTA
(8,11) systems are not designed to perform large scale alignment
of genomes, and our attemptsto use these did not produce dl the
information we needed. It is possible, of course, to aign two
genomesgene-by-gene, or to align shorter piecesand concatenate
all the results. By assuming that the two input sequences are
closely related, our algorithm can perform large scale alignments
quickly and precisaly; the result is a very detailed and inclusive
base-to-base mapping between the two sequences.

ALGORITHMIC METHODS

The basis of the agorithm is a data structure known as a suffix
tree, which alows one to find, extremely efficiently, al distinct
subsequences in a given sequence. The first efficient algorithms
to construct suffix trees were given by Weiner (17) and
McCreight (18), and this data structure has been studied
extensively for more than two decades (9). For the task of
comparing two DNA sequences, suffix trees alow usto quickly
find all subsequences shared by the two inputs. The dignment is
then built upon this information.

Our system uses a combination of threeideas. suffix trees, the
longest increasing subseguence (LIS) and Smith—Waterman
alignment (7). The novelty of the system derives from the
integration of these ideas into a coherent system for large-scale
genome alignment. Wefocus here on the high-level design of the
system and exclude some of the low-level agorithmic details;
those details can be found in the references.

The inputs to the system are two sequences, which for
convenience we refer to as Genome A and Genome B. Note that
any sequences can be provided as input (in fact, we have a
modified version of the system that handles protein sequences),
but we will use DNA for the purposes of discussion. We assume
the sequences to be compared are closely homologous. In
particular, we assume that there is a mapping between large
subsequencesof thetwo inputs, presumably becausethey evolved
from a common ancestor. The main biologica features that the
systemidentifiesareasfollows. (i) SNPs, defined hereasasingle
mutation ‘ surrounded’ by two matching regions on both sides of
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Genome A: tcgatcGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAcgactta
Genome B:  gcattaGACGATCGCGGCCGTAGATCGAATAACGAGAGAGCATAAtccagag

Figure 1. A maximal unigque matching subsequence (MUM) of 39 nt (shown
in uppercase) shared by Genome A and GenomeB. Any extension of theMUM
will resultinamismatch. By definition, an MUM does not occur anywhere else
in either genome.

themutation. (ii) Regions of DNA wherethe two input sequences
have diverged by more than an SNP. (iii) Large regions of DNA
that have been inserted into one of the genomes, for example by
transposition, sequence reversal or lateral transfer from another
organism. (iv) Repests, usualy in the form of a duplication that
has occurred in one genome but not the other. The repeated
regions can appear in widely scattered locations in the input
sequences. (v) Tandem repeats, regions of repeated DNA that
might occur in immediate succession, but with different copy
numbers in the two genomes. The copy numbers do not have to
beintegers, e.g., arepeat could occur 2.5 timesin onegenomeand
4.2 timesin the other.

The alignment process consists of the following steps, which
are described in more detail in subseguent sections.

(i) Perform amaximal unique match (MUM) decomposition of
the two genomes. This decomposition identifies all maximal,
unique matching subsequences in both genomes. An MUM isa
subsequence that occurs exactly once in Genome A and once in
Genome B, and is not contained in any longer such sequence.
Thus, the two character positions bounding an MUM must be
mismatches, as shown in Figure 1. The crucia principle behind
this step isthe following: if along, perfectly matching sequence
occurs exactly oncein each genome, itisalmost certain to be part
of theglobal alignment. (Notethat asimilar intuitionisbehind the
hashing method upon which FASTA and BLAST are based.)
Thus, we can build the global alignment around the MUM
alignment. Because of the assumption that the two genomes are
highly similar, we are assured that alarge number of MUMswill
be identified.

MUMs on both DNA strands are identified; this alows the
system to identify sequences from one genome that appear
reversed in the other genome.

(i) Sort the matchesfoundinthe MUM dignment, and extract the
longest possible set of matches that occur in the same order in both
genomes. Thisisdone using avariation of thewdl-known agorithm
to find the LIS of a sequence of integers. Thus, we compute an
ordered MUM dignment that provides an easy and natural way to
scan the dignment from |eft to right.

(iii) Close the gaps in the dignment by performing loca
identification of large inserts, repeats, smal mutated regions,
tandem repeats and SNPs.

(iv) Output the aignment, including al the matches in the
MUM dignment as well as the detailed dignments of regions
that do not match exactly.

The system, which is cdled MUMmer, is packaged as three
independent modules: suffix tree congtruction, sorting and extraction
of the LIS, and generation of Smith-Waterman dignmentsfor al the
regions between the MUMSs. The lagt step can eesily be replaced
with another dignment program if a user wishes. In the ensuing
sections we daborate further on each of these steps.
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t

Figure 2. Suffix tree for the sequence gaaccgacct. Square nodes are leaves and
represent complete suffixes. They are labeled by the starting position of the
suffix. Circular nodes represent repeated sequences and are labeled by the
length of that sequence. In this example the longest repested sequence is acc
occurring at positions3 and 7.

Maximal unique matching subsequence decomposition

As mentioned above, identification of MUMs isthe key step in
the alignment. By identifying the sequences that occur only once
in each genome we can complete the alignment by closing the
gaps between the aligned MUMs.

The problem of finding a set of maxima unique matching
strings (subsequences) in two very long sequencesisby no means
computationaly trivid. Thenaive agorithm for thisproblemwill
imply matching every subsequence in Genome A with Genome
B. There are O(n?) such subsequences (where n isthe sum of the
lengths of the two genomes), and each match requires approxi-
mately O(n) time using standard pattern matching methods.

Fortunately, we can employ an ingenious computetiona data
gructureintroduced by Weiner (17) cdled asuffix tree. An example
of asuffix tree for the string gaaccgacct is shown in Figure 2.

Asthenameimplies, asuffix treeisacompact representation that
soresdl possible suffixes of an input sequence S A suffix issmply
a subsequence that begins a any podtion in the sequence and
extends to the end of the sequence. Each suffix in Scan be located
by traversing a unique path in the tree from the root node to a lesf
node. In other words, each lesf node represents a unique suffix. A
sequence of length N has N suffixes, one sarting a each sequence
position, so the tree must have N leaves, and therefore & most N-1
internal nodes snce eech interna node has at least two child nodes.
Note that each internd node in a tree corresponds to a repeated
sequenceintheorigind genome, wherethe repeat number equalsthe
number of leaf nodes underneath that node in the tree. [Recently
auffix trees have a so been used to hel p discover regulatory dements
in genomic yeast sequences (19). For other gpplications of suffix
trees to sequence andysds, see Gudfidd (9).]

Thesimple, brute-force agorithm to construct suffix treesruns
in quadratic time; this is no faster than dynamic programming
and, as explained above, is impractical for comparing whole
genomes. However, it is possible to build a suffix tree in linear
time by clever use of sets of pointers (17,18,20,21); our system
uses McCreight's (18) algorithm. Thetota size of thetreeisaso
linear in the sum of the lengths of the genomesin it, since there
isexactly oneleaf and at most oneinternal nodefor each base, and
the sizes of these nodes are fixed. Note that the sequence label on
each edge can be represented by two integers (its length and
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starting position in the genome), no matter how long it is. Our
particular implementation uses 12 bytes per leaf node, 24 bytes
per internal node, plus 1 byte for each base in the genome. More
compact representations are possible (22). Because suffix-tree
construction and all subsequent steps require no more than linear
time and space, the overall running time (and space) required by
the system is also linear. As a very generous upper bound, the
system as implemented requires no more than 37 bytes per base
of the input sequences, thus a comparison of two 100 Mb
chromosomes would require <8 gigabytes of memory (and
probably far less than that).

MUMmer begins by congtructing a suffix tree T for genome A,
and then adding the suffixes for genome B to T. Adding suffixes
from an additiond dring to a suffix tree is atrivia modification of
the construction agorithm for asingle string, since the congtruction
is accomplished by adding one suffix at atime to the portion of the
tree that has dready been congructed. Alternately, we can achieve
the same effect by concatenating the two genomes (separated by a
dummy character that does not occur in either genome) and
congructing a suffix tree from that Sngle concatenated string.

Each leaf nodein T islabeled to indicate which suffix it represents
in which genome, A or B. The system needs to identify the nodesin
the tree that correspond to MUMSs. It is not hard to see that every
unigque matching sequence is represented by an interna node with
exactly two child nodes, such that the child nodes are leaf nodes
from different genomes. The unique matches that are maxima can
be identified by mismatches at their ends. (MUMmer as actudly
implemented determines whether a match is maxima based on
pointers used to congruct the suffix tree)) Thus, in asingle scan of
the suffix tree, dl MUMSs can be identified.

The main input parameter to the system, besides the genomes
themsdlves, is the length of the shortest MUM that the system will
identify. We typically do not want to report short MUMSs that are
likely to be random matches. For highly similar genomes (as with
the two tuberculogis drains), we st this parameter to 50 bp.
However, for more digantly rdated genomes, fever MUMs of
50 bp might exist, and therefore this parameter can be adjusted. For
aigning the two Mycoplasma species, we used a minimum MUM
length of just 20 bp.

Sorting the MUM's

After finding al the MUMSs, we sort them according to their
position in Genome A. Now we consider the order of their
matching positions in Genome B. In some cases, eg. a
transposition or reversal between the genomes, the B positionsare
not in ascending order. See Figure 3 for an illudtration. Here we
have assigned two integersto each MUM representing the ordinal
position of the subsequence in Genomes A and B. Since we have
sorted the MUMSs by their A-positions, we can depict the
alignment as the single sequence of B-position integers.

We now employ avariation of the LISagorithm (9) to find the
longest set of MUM s whose sequences occur in ascending order
in both Genome A and Genome B. Essentidly, we want the LIS
contained in the sequence of B-position integers. For instance, if
the order of B positionsiis given by the sequence (1, 2, 10, 4, 5,
8,6,7,9 3),theLISis(1,2,4,5,6,7,9). The LIS technique
alows us to browse the alignment from left to right, as well as
‘close the gaps’ in the aignment consistently. MUMmer imple-
ments a variation of this algorithm that takes into account the

Genome A: 22/3 4 5 6 7
Genome B: ] PR : p - S
Genome A: 1‘ 2\ 4 j— 7
Genome B: ] 5 z P -

Figure 3. Aligning Genome A and Genome B &fter locating the MUMs. Each
MUM is here indicated only by a number, regardiess of its length. The top
dignment shows all the MUMs. The shift of MUM 5 in Genome B indicates
atransposition. The shift of MUM 3 could be simply a random match or part
of an inexact repeat sequence. The bottom alignment shows just the LIS of
MUMsin Genome B.

1. SNP: exactly one base (indicated by ) differs between the two sequences. It is
surrounded by exact-match sequence.
Genome A: cgtcatgggegttcgtegttg

Genome B: cgtcatgggcattcgtegttg

2. Insertion: a sequence that occurs in one genome but not the other.

Genome A:  CEEEGLAACCETC. - v v v cctggteggg
Genome B: cggggtaaccgegttgeteggggtaaccgeeetggteggg

3. Highly polymorphic region: many mutations in a short region.

Genome A: ccgectegeetgg. getggegeccgetce
Genome B: ccgectegecagttgaccgegeeegete

4. Repeat sequence: the repeat is shown in uppercase. Note that the first copy of
the repeat in Genome B is imperfect, containing one mismatch to the other three
identical copies.

Genome A: cTGGGTGGGACAACGTaaaaaaaaaTGGGTGGGACAACGTC
Genome B: aTGGGTGGGGCgACCTgggggggggTGGGTGGGACAACGTa

Figure4. Thefour typesof gapsin MUM dignment. Theseexamplesaredrawn
from the alignment of the two M.tuberculosis genomes.

lengths of the sequences represented by the MUMs and the fact
that they can overlap.

An example of an initidl MUM-alignment and the ordered
MUM -alignment that results from applying the LIS algorithmis
shown in Figure 3. The longest increasing sequence algorithm
requires O (K log K) time, where K is the number of MUMs. It
can also be implemented using asimpler dynamic programming
agorithm in O(K?) time. In genera, K is much smaller than
N/log N so this step takes O(N) time.

Closing the gaps

Once a globad MUM-alignment is found, we deploy severd
agorithms for closing the local gaps and completing the
alignment. A gap is defined as an interruption in the MUM-
alignment which falls into one of four classes. (i) an SNP
interruption, (ii) aninsertion, (iii) ahighly polymorphic region or
(iv) arepeat. These classes are depicted in Figure 4.

NP processing. The identification of SNPs is becoming an
increasingly important task in DNA sequence analysis, especialy
as the number of sequences from closely related organisms
increases (23,24). SNPs in human DNA appear to be associated
with many important health issues, including genetic illnesses
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and disease susceptibility. SNPs manifest themselvesin two ways
in the MUM aignment. In the smpler case, the SNP is
surrounded by maximal unigque matching subsequences. In this
caseour program easily identifiesthe SNP, which manifestsitself
as asimple gap of one base between the MUMSs. In some cases,
however, an SNP is adjacent to sequences that appear €lsewhere
inone of the genomes; i.e., the adjacent sequencesare not unique.
In this case the adjacent sequence plus the SNP is captured and
processed by the repeat processing procedure described below.

Insert detection. Aninsert isdefined asamoderately largeregion
that appears in one genome and not the other. Such inserts are
easly detected as large gapsin the alignment in one genome and
not the other.

Inserts can be divided into two classes. Transpositions are
subsequences that have been deleted from one location and
inserted elsewhere (with respect to one of the genomes, of
course). These are detected during a post-processing step; they
appear inthe MUM alignment out of sequence. Simpleinsertions
are subsequences that appear in only one of the genomes; these
may be the result of latera transfer, smple deletions or other
evolutionary processes. Regardless of the cause, these simple
insertions can beidentified as such because they do not appear in
the MUM dignment.

Polymorphic regions. Gaps in the MUM alignment can be also
caused by sequences that have large numbers of differences, but
that till should be digned in the whole genome alignment.
Because the number of differencesis high, it is less meaningful
to define these regions in terms of the SNPs; for example, if the
sequence identity is 25%, the sequences might be considered
highly homologous although the number of SNPs is triple the
number of conserved positions. If these regions are sufficiently
small, we align them with a standard dynamic programming
algorithm, essentialy equivalent to Smith-Waterman (7). This
produces an optimal alignment with respect to pre-specified
insertion and mutation costs. For very large polymorphic regions,
we can apply our entire matching procedure recursively using a
reduced minimum MUM length, if desired.

Repeat processing. Repeat sequences do not appear inthe MUM
alignment because, by definition, the MUM alignment only
includes sequences that appear exactly once in each genome. In
our comparison of the M.tuberculosis strains we found that most
repeats were tandem repeats. In every case we found in
M.tuberculosis, repeat sequences were adjacent to unique
sequence, and the MUM on either end of a tandem repeat
extended into the repeat itself. Asaresult, the MUM aignment
indicatesagap that issmaller than thelength of thetandem repest.
Also note that the MUMSs overlap one another.

Figure 5 shows a tandem repeet with different copy numbersin
Genomes A and B. In this example, there are two MUMs
(i) uniqueAAGGAAGG and (i) AAGGAAGGsquence. Depend-
ing on how this region is digned, the four-base gap could appear
anywhere between positions 6 and 14 (as shown) in the dignment.
(For condggtency, MUMmer adways shows the insertion a the
rightmost position.) The MUM dignment will indicate that MUM
(i) occupies pogtions 0..13, and MUM (ii) occupies positions
10..25 in Genome A. The fact that these two intervas overlep
indicates to the dgorithm that a tandem repesat is present. The
differencein overlgp length in the two genomes (the overlap iseight
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Genome A: uniqueAAGGAAGGAAGGsequence
Genome B: uniqueAAGGAAGG. . . .sequence
[ [ |
Position: 0 10 20

Figure5. Repeat sequences surrounded by unigue sequences. For the purposes
of illustration, other characters besides the four DNA nucleotides are used.

basesin Genome B but only four basesin Genome A) indicates how
many additiona repeat bases are inserted in one of the genomes.

RESULTS AND DISCUSSION
Comparing two strains of tuberculosis

We used MUMmer to perform a comparison of two grains of
tuberculogs that have recently been sequenced, H37Rv (4) and
CDC1551 (R.D.FHeischmann e al., manuscript in preparetion).
H37Rv isalaboratory grain that has been in continuous culture for
>90 years, while CDC1551 is a recent dinicd isolate that has
demondtrated itsdlf to be highly virulent (25). Tuberculosisisknown
to mutate relatively dowly (26), o despite the length of time that
these drains have had to diverge, their genomes are gill >99%
identical (not counting severd large repeat sequences that appear in
different copy numbers). Understanding the differencesis critical to
understanding the different biologicad behavior of the two strains.
Running the two genomes through MUMmer produced a
whole-genome alignment that mapped every base of one genome
onto the other. Thus we were able to catalog al SNPs, al
insertions of every length, al tandem repeats with different copy
numbers and other miscellaneousdifferences. A detailed descrip-
tion of thebiological consequencesof thiscomparisonwill appear
elsewhere (R.D.Fleischmann et al., manuscript in preparation).
Our dignment reveded thousands of individua differences
between the two genomes, most of which were single base changes.
There were severd dozen large insartions unique to each genome,
many of which contained genes or patia genes. An example is
shown in Figure 6, which shows a 15 kb region containing three
insertionsand five point mutations. Using the display toal illustrated
in the figure, we were able not only to identify al the differences,
but aso to identify which mutations were silent, which ones resulted
in a premature stop in one genome, and which of the many
differences occurred in intergenic regions. The tool dlows the
investigator to click on any of the genes, which are linked to alive
database, and get adetailed report on that gene. Theanaysis showed
that, of those insertions that occurred in genes, [I75% occurred in
hypothetica genes; i.e., geneswith no homology to any known gene.
Because only 45% of the annotated genes are hypotheticd, this
result suggests that some of the annotated hypothetical genesare not
real. MUMmer’soutput a so makesit easy tofind very long identical
sequences. the longest such sequence shared between the two
genomesis 24 563 bp, and there are 246 MUMs >5000 bp in length.
Thetimerequiredto generatethealignmentswas55sonaDEC
Alpha 4100, broken down as follows: 5 s for suffix tree
construction, 45 sfor sorting the MUMs and finding the longest
increasing sequence and 5 sfor generating the Smith—Waterman
alignments of the gaps. (Because the sequences are so close to
identical, the Smith—\Waterman step needsto do very littlework.)
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Figure 6. Alignment of M.tuberculosis strain CDC1551 (top) and H37Rv (bottom). This alignment was extracted from the graphical display tool developed to scan
and zoom in on the output of the genome alignment program. In the view shown, single green linesin the center connect single-base differences between the genomes.
Blue v-shaped lines indicate insertions. The first two v-shaped insertions are large insertions in the H37Rv strain, and the third insertion is a very small insertionin
CDC1551. Thislast insertion appearsasalinerather than av-shape dueto theresol ution of the displayed region. The genesfrom both genomesare displayed asarrows,
with color-coding to indicate the role assigned to each gene. Role assignments and gene IDs are taken from annotation of the TIGR and Sanger genome centers,
respectively. Note that both of the large insertions shown here contain genes. White lines (gaps) appearing in the middle of some arrows indicate silent mutationsin
those genes. Point mutations that change an amino acid are displayed differently; none occur in thisregion. Either genome can be scrolled independently, and the scale
can be adjusted up or down, from viewing of individual bases all the way out to viewing the entire genome on the screen.

Comparing two Mycoplasma genomes

The H37Rv and CDC1551 drains of M.tuberculoss are highly
homologous, containing many subseguences thousands of nucleo-
tideslong that are perfect matches. To test the limits of our system,
we turned to two bacteriatheat are ‘cousins but that are much more
digantly related. The genome of M.genitalium is 580 074 nt in
length, while M.pneumoniaeis 816 394 nt. Clearly there are at least
226 000 nt of additiond DNA in M.pneumoniag; however,
aignments of proteins indicate that nearly al of M.genitalium is
contained in M.pneumoniae (27). The protein dignments further
indicate thet very large fragments of M.genitalium retain the same
order and orientetion in M.pneumoniae. Thus, despite the
evolutionary distance between these organisms, we bdlieved that it
might be possible to dign them using MUMmer.

The system aligned these two genomes quite easily, asit turned
out. This was somewhat surprising given previous difficulties at
producing such an alignment using alternative methods. Not only
did it work, but it worked very fast: the suffix tree portion of the
computation took 6.5 s, while sorting and finding the LIS of
MUMs took 0.02 s (on a DEC Alpha 4100). Generating the
Smith—Waterman aignments of the gaps between the MUMs
took 116 s; not surprisingly, this was much dower than for the
tubercul osis genome comparison because of the larger amount of
sequence that fell into the gaps.

Figure 7 illustrates the alignment at the whole genome level.
Three different alignment methods were used in this figure. A
FASTA aignment was generated by dividing each genome into
1000 bp segments and using those segmentsin ‘all againgt al’

FASTA (11) searches. [In the comparison of thetwo Mycoplasma
that appeared previously (27), the FASTA and BLAST programs
were used in asimilar manner to compare all genesto all genes,
omitting non-coding regions.] Thisanalysisrequired many hours
of compute time. Pairs of sequences that were at least 50%
identical over 80% of the match appear as pointsin the plot. The
middle of Figure 7 illustrates a much simpler method, where
unique, exactly matching 25mers are plotted; this figure mimics
the MUM alignment but uses afixed length for the MUMs. This
islessnoisy thanthe FASTA alignment, but of courseit only gives
a rough alignment. The bottom of Figure 7 shows the MUM
alignment, where each MUM appears as a point. This is the
cleanest and most continuous of the alignments, though of course
it contains many gaps. As the figure makes clear, the overall
alignment of thesetwo genomesisbasically along series of short
(mostly 20-30 bp) exact matches strung together in the same
order and with the same spacing in both genomes. The longest
exactly matching segquence between the two genomes was only
281 bpand thereareonly 16 shared MUMs>100 bp. Intotal there
are 20 872 bp contained in shared MUMSs of =15 bp, just 3.6% of
the shorter genome's length.

The MUM dignment clearly shows five trandocations of
M.genitalium sequence with respect to M.pneumoniae, in agree-
ment with the analysis of Himmelreich et al. (27). Inthe FASTA
and 25mer alignments, these trand ocations are either missing or
very difficult to identify amidst the noise.

Inaddition to the datashown in Figure 7, MUMmer aso produces
afile containing the complete Smith-Waterman dignment of al the
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Figure 7. Alignment of M.genitalium and M.pneumoniae using FASTA (top), 25mers (middle) and MUMs (bottom). In dl three plots, a point indicates a ‘ match’
between the genomes. In the FASTA plot a point corresponds to similar genes. In the 25mer plot, each point indicates a 25-base sequence that occurs exactly once
in each genome. In the MUM plot, points correspond to MUMSs as defined in the main text.

0aps between the MUMSs. (See Figure 4 for an illugtration of what
this output looks like) Most of these digned gaps were nearly
identicad in length, and obvioudy corresponded to sequences with a
shared evolutionary higtory, but the sequence identity averaged
<50%, much lower than in the M.tuberculosis comparison. Taken
together, thisdatadlows usto map every base of thesmdler genome
to its corresponding position in the larger genome.

Comparing human and mouse

To test MUMmer on sequences even more distant than the two
Mycoplasmas, we chose a 222 930 bp subsequence of human
chromosome 12p13 (accession no. U47924) that is syntenic to a
227 538 bp contiguous subsequence of mouse chromosome 6
(accession no. AC002397). These sequences were the subject of
arecent study by Ansari-Lari et al. (28), who used acombination
of alignment tools to produce a detailed alignment. These tools
included DOTTER (29) for the initial comparison, a modified
version of SIM (30) to find good local aignments, percent

identity plots(pip) to display theresults(31) and aprogram called
CONSERVED (32) to identify segments >50 bp with >60%
sequenceidentity inthe SIM adignment. Asreported in that study,
the nucleotide similarity for the coding portions of the 17 genes
in this region ranges from 70 to 92%, while the percent identity
for amino acids ranges from 56 to 100%.

Although our alignment does not contain dl the details
generated and displayed by the combination of methods used in
Ansari-Lari et al., the overall aignment of the two sequencesis
easily apparent from the output of our program. The program
required 29 sof CPU timeto generate the compl ete alignment, of
which 1.6 swas used to build the suffix tree. The dignment using
15mers as the minimum MUM length contained severa large
gaps corresponding to intergenic regions, as shown in Figure 8.
Re-running the program with minimum MUMs of 10 bp reduces
the gaps, but in either case one must examine the Smith—\Water-
man agorithm output to see the complete alignment. The figure
also shows other MUMsfalling outside the aligned region; these
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are not included in the LIS, but are shown to illustrate the
relatively low ‘background’ of random matches in the 15 bp
MUM alignment.
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