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ABSTRACT

A new system for aligning whole genome sequences
is described. Using an efficient data structure called a
suffix tree, the system is able to rapidly align
sequences containing millions of nucleotides. Its use
is demonstrated on two strains of Mycobacterium
tuberculosis, on two less similar species of Mycoplasma
bacteria and on two syntenic sequences from human
chromosome 12 and mouse chromosome 6. In each
case it found an alignment of the input sequences, using
between 30 s and 2 min of computation time. From the
system output, information on single nucleotide
changes, translocations and homologous genes can
easily be extracted. Use of the algorithm should
facilitate analysis of syntenic chromosomal regions,
strain-to-strain comparisons, evolutionary comparisons
and genomic duplications.

INTRODUCTION

Since the first successful whole-genome shotgun sequence of
Haemophilus influenzae (1), the number of organisms whose
genomes have been completely sequenced has been increasing
rapidly each year. As the number and variety of these genomes
increase, it is becoming more common for a project to sequence
the genome of an organism that is very closely related to another
completed genome. For example, the genomes of Mycoplasma
genitalium (2) and Mycoplasma pneumoniae (3), the third and
fifth prokaryotic organisms to be completely sequenced, respect-
ively, are very closely related and share sequence homology
across large fractions of their genomes. More recently, there has
been tremendous scientific interest in sequencing different strains
of the same bacteria. Two strains of Mycobacterium tuberculosis,
H37Rv (4) and CDC1551 (R.D.Fleischmann et al., manuscript in
preparation), and two strains of Chlamydia trachomatis, serovar
D (5) and mouse pneumonitis (Fraser et al., manuscript in
preparation), will be completely sequenced in the near future; in
each case one of the two strains is complete and the other is nearly
so. It is clear that the future will see an increasing number of
sequencing projects whose target is a strain or species that is
closely related to an already-sequenced organism.

When the genome sequence of two closely related organisms
becomes available, one of the first questions researchers want to
ask is how the two genomes align. There is a large body of
research, including many sophisticated algorithms, for aligning
two sequences. This vast literature cannot be cited here, but
important early work includes Needleman and Wunsch (6) and
Smith and Waterman (7) (for recent reviews see 8,9). The focus
of most prior research has been on comparing single proteins or
genomic DNA sequences containing a single gene. The existing
algorithms work extremely well on this task, but in most cases are
ineffective in aligning entire genomes. The problem is really one
of size: single gene sequences may be as long as tens of thousands
of nucleotides, but whole genomes are usually millions of
nucleotides or larger. When comparing a 4 Mb sequence such as
M.tuberculosis to another 4 Mb sequence, many algorithms either
run out of memory or take unacceptably long to complete. In
addition, previous algorithms were designed primarily to dis-
cover insertions, deletions and point mutations, but not to look for
the kinds of large-scale changes that can be discovered in
whole-genome comparisons, such as differences in tandem
repeats and large scale reversals.

In this paper we describe a system for pairwise alignment and
comparison of very large scale DNA sequences. The algorithm
assumes the sequences are closely related, and using this assumption
can quickly compare sequences that are millions of nucleotides in
length. It will also be able to compare entire chromosomes as large
as human chromosome 1 (i.e., several hundred million basepairs),
once such sequences are available, and in the process identify all
differences between two different individuals.

The system is specifically designed to perform high resolution
comparison of genome-length sequences. It outputs a base-to-base
alignment of the input sequences, highlighting the exact differences
in the genomes. It will locate all single nucleotide polymorphisms
(SNPs), large inserts, significant repeats, tandem repeats and
reversals, in addition to identifying the exact matches between the
genomes.

We have applied this system to the CDC1551 and H37Rv
strains of M.tuberculosis, to the two completed Mycoplasma
genomes, and to two relatively long (225 kb) syntenic sequences
from the human and mouse genomes. In the case of tuberculosis,
the strains are very closely related, and the system was very useful
at pinpointing the SNPs and the relatively small number of
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significant insertions between these two genomes. (For the
context of this discussion, the term SNP is used to mean a
sequence that appears in both genomes with a difference of just
one base between the two copies. Such polymorphisms may or
may not represent mutations that occur in a significant percentage
of the population.) In the second case, where the organisms are
much less closely related (differing by hundreds of thousands of
nucleotides), the system is nonetheless able to align the genomes
precisely. We also tested our system on even more distantly
related sequences by comparing a syntenic region from the mouse
and human genomes. The results of these comparisons are
described in the Results and Discussion.

In addition to allowing for comparison between different
organisms, the system described here can also be put to a different
use. At different stages of any large genomic sequencing project, the
assembled sequence will change as gaps are closed, sequencing
errors are corrected and additional sequences are completed.
Because the finishing stage involves many individuals, it can be
difficult for a project leader (or any one person) to get a picture of
what has changed each time a genome is reassembled. The program
described here can compare two different versions of a genome at
different stages of sequencing and highlight precisely what has
changed.

The output of the system gives a clear picture at the sequence
level of all the differences between two genomes. (The code is
freely available; contact the authors by email for details.) To
present a more global picture, we have also developed a graphical
interface that allows a researcher to scroll along the two genomes
being compared and zoom in on areas of interest. (See Figure 6 for
an example of what the tool displays.) The next sections describe
the computational techniques employed in the system, followed by
a demonstration of its use in three different comparisons: complete
genomes of two strains of M.tuberculosis, complete genomes of
two related species of Mycoplasma, and related 225 kb regions
from mouse chromosome 6 and human chromosome 12.

THE CHALLENGE OF WHOLE GENOME ALIGNMENT

The standard algorithms for sequence alignment rely on either
dynamic programming (7,10) or hashing techniques (8,11). Naïve
versions of dynamic programming use O(n2) space and time
(where n is the length of the shorter of the two sequences being
compared), which makes computation simply unfeasible for
sequences of size ≥4 Mb (such as the two M.tuberculosis
genomes). [For an input with size n, a function X is O(n2) if, for
sufficiently large n and for some constant C independent of n,
X ≤ C·n2. Informally stated, the O(n2) notation means that the
amount of space and time required for the computation is no more
than Cn2.] Hashing techniques operate faster on average, but they
involve a ‘match and extend’ strategy, where the ‘extend’ part also
takes O(n2) time. For dynamic programming, it is possible to
reduce the required space to O(n) by taking more time; this solves
the memory problem but still leaves one with an unacceptably slow
algorithm. Faster algorithms can be developed for specialized
purposes, such as a recent system for finding tandem repeats (12).
This repeat finder uses a k-tuple hashing algorithm and couples it
with a stochastic pattern matching strategy.

More complex dynamic programming methods can be used for
alignment when the alignment error is expected to be low. For
example, one can align two similar sequences with at most E
differences (or errors) in time proportional to E times the length of

the longer sequence. The sim3 program (13) uses a linear time
algorithm that works well when the input sequences are highly
similar; it runs very fast even on very long sequences. Unfortunately,
this class of algorithms does not always work for whole genome
alignments, since the ‘errors’ may include multiple large inserts on
the order of 104 or 105 nucleotides. As we demonstrate below, the
number of differences may be greater than 100 000 despite the fact
that the genomes (in this case M.genitalium and M.pneumoniae) are
closely related and can in fact be aligned with one another.

Another system developed to align long sequences is sim2 (14).
This system uses a BLAST-like hashing scheme to identify exact
k-mer matches, which are extended to maximal-length matches.
These maximal matches are then combined into local alignment
chains by a dynamic programming step. In contrast, our
suffix-tree approach directly finds maximal matches that are
unique. These matches can then be easily ordered to form the
basis of an alignment that can span even very long mismatch
regions between the two input genomes.

The system described here was developed in response to our
own efforts as part of sequencing strain CDC1551 of M.tuber-
culosis; we realized it was essential to describe all the differences
between CDC1551 and the recently completed H37Rv strain (4).
The well-known and widely used BLAST (15,16) and FASTA
(8,11) systems are not designed to perform large scale alignment
of genomes, and our attempts to use these did not produce all the
information we needed. It is possible, of course, to align two
genomes gene-by-gene, or to align shorter pieces and concatenate
all the results. By assuming that the two input sequences are
closely related, our algorithm can perform large scale alignments
quickly and precisely; the result is a very detailed and inclusive
base-to-base mapping between the two sequences.

ALGORITHMIC METHODS

The basis of the algorithm is a data structure known as a suffix
tree, which allows one to find, extremely efficiently, all distinct
subsequences in a given sequence. The first efficient algorithms
to construct suffix trees were given by Weiner (17) and
McCreight (18), and this data structure has been studied
extensively for more than two decades (9). For the task of
comparing two DNA sequences, suffix trees allow us to quickly
find all subsequences shared by the two inputs. The alignment is
then built upon this information.

Our system uses a combination of three ideas: suffix trees, the
longest increasing subsequence (LIS) and Smith–Waterman
alignment (7). The novelty of the system derives from the
integration of these ideas into a coherent system for large-scale
genome alignment. We focus here on the high-level design of the
system and exclude some of the low-level algorithmic details;
those details can be found in the references.

The inputs to the system are two sequences, which for
convenience we refer to as Genome A and Genome B. Note that
any sequences can be provided as input (in fact, we have a
modified version of the system that handles protein sequences),
but we will use DNA for the purposes of discussion. We assume
the sequences to be compared are closely homologous. In
particular, we assume that there is a mapping between large
subsequences of the two inputs, presumably because they evolved
from a common ancestor. The main biological features that the
system identifies are as follows. (i) SNPs, defined here as a single
mutation ‘surrounded’ by two matching regions on both sides of
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Figure 1. A maximal unique matching subsequence (MUM) of 39 nt (shown
in uppercase) shared by Genome A and Genome B. Any extension of  the MUM
will result in a mismatch. By definition, an MUM does not occur anywhere else
in either genome.

the mutation. (ii) Regions of DNA where the two input sequences
have diverged by more than an SNP. (iii) Large regions of DNA
that have been inserted into one of the genomes, for example by
transposition, sequence reversal or lateral transfer from another
organism. (iv) Repeats, usually in the form of a duplication that
has occurred in one genome but not the other. The repeated
regions can appear in widely scattered locations in the input
sequences. (v) Tandem repeats, regions of repeated DNA that
might occur in immediate succession, but with different copy
numbers in the two genomes. The copy numbers do not have to
be integers; e.g., a repeat could occur 2.5 times in one genome and
4.2 times in the other.

The alignment process consists of the following steps, which
are described in more detail in subsequent sections.

(i) Perform a maximal unique match (MUM) decomposition of
the two genomes. This decomposition identifies all maximal,
unique matching subsequences in both genomes. An MUM is a
subsequence that occurs exactly once in Genome A and once in
Genome B, and is not contained in any longer such sequence.
Thus, the two character positions bounding an MUM must be
mismatches, as shown in Figure 1. The crucial principle behind
this step is the following: if a long, perfectly matching sequence
occurs exactly once in each genome, it is almost certain to be part
of the global alignment. (Note that a similar intuition is behind the
hashing method upon which FASTA and BLAST are based.)
Thus, we can build the global alignment around the MUM
alignment. Because of the assumption that the two genomes are
highly similar, we are assured that a large number of MUMs will
be identified.

MUMs on both DNA strands are identified; this allows the
system to identify sequences from one genome that appear
reversed in the other genome.

(ii) Sort the matches found in the MUM alignment, and extract the
longest possible set of matches that occur in the same order in both
genomes. This is done using a variation of the well-known algorithm
to find the LIS of a sequence of integers. Thus, we compute an
ordered MUM alignment that provides an easy and natural way to
scan the alignment from left to right.

(iii) Close the gaps in the alignment by performing local
identification of large inserts, repeats, small mutated regions,
tandem repeats and SNPs.

(iv) Output the alignment, including all the matches in the
MUM alignment as well as the detailed alignments of regions
that do not match exactly.

The system, which is called MUMmer, is packaged as three
independent modules: suffix tree construction, sorting and extraction
of the LIS, and generation of Smith–Waterman alignments for all the
regions between the MUMs. The last step can easily be replaced
with another alignment program if a user wishes. In the ensuing
sections we elaborate further on each of these steps.

Figure 2. Suffix tree for the sequence gaaccgacct. Square nodes are leaves and
represent complete suffixes. They are labeled by the starting position of the
suffix. Circular nodes represent repeated sequences and are labeled by the
length of that sequence. In this example the longest repeated sequence is acc
occurring at positions 3 and 7.

Maximal unique matching subsequence decomposition

As mentioned above, identification of MUMs is the key step in
the alignment. By identifying the sequences that occur only once
in each genome we can complete the alignment by closing the
gaps between the aligned MUMs.

The problem of finding a set of maximal unique matching
strings (subsequences) in two very long sequences is by no means
computationally trivial. The naïve algorithm for this problem will
imply matching every subsequence in Genome A with Genome
B. There are O(n2) such subsequences (where n is the sum of the
lengths of the two genomes), and each match requires approxi-
mately O(n) time using standard pattern matching methods.

Fortunately, we can employ an ingenious computational data
structure introduced by Weiner (17) called a suffix tree. An example
of a suffix tree for the string gaaccgacct is shown in Figure 2.

As the name implies, a suffix tree is a compact representation that
stores all possible suffixes of an input sequence S. A suffix is simply
a subsequence that begins at any position in the sequence and
extends to the end of the sequence. Each suffix in S can be located
by traversing a unique path in the tree from the root node to a leaf
node. In other words, each leaf node represents a unique suffix. A
sequence of length N has N suffixes, one starting at each sequence
position, so the tree must have N leaves, and therefore at most N–1
internal nodes since each internal node has at least two child nodes.
Note that each internal node in a tree corresponds to a repeated
sequence in the original genome, where the repeat number equals the
number of leaf nodes underneath that node in the tree. [Recently
suffix trees have also been used to help discover regulatory elements
in genomic yeast sequences (19). For other applications of suffix
trees to sequence analysis, see Gusfield (9).]

The simple, brute-force algorithm to construct suffix trees runs
in quadratic time; this is no faster than dynamic programming
and, as explained above, is impractical for comparing whole
genomes. However, it is possible to build a suffix tree in linear
time by clever use of sets of pointers (17,18,20,21); our system
uses McCreight’s (18) algorithm. The total size of the tree is also
linear in the sum of the lengths of the genomes in it, since there
is exactly one leaf and at most one internal node for each base, and
the sizes of these nodes are fixed. Note that the sequence label on
each edge can be represented by two integers (its length and
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starting position in the genome), no matter how long it is. Our
particular implementation uses 12 bytes per leaf node, 24 bytes
per internal node, plus 1 byte for each base in the genome. More
compact representations are possible (22). Because suffix-tree
construction and all subsequent steps require no more than linear
time and space, the overall running time (and space) required by
the system is also linear. As a very generous upper bound, the
system as implemented requires no more than 37 bytes per base
of the input sequences; thus a comparison of two 100 Mb
chromosomes would require <8 gigabytes of memory (and
probably far less than that).

MUMmer begins by constructing a suffix tree T for genome A,
and then adding the suffixes for genome B to T. Adding suffixes
from an additional string to a suffix tree is a trivial modification of
the construction algorithm for a single string, since the construction
is accomplished by adding one suffix at a time to the portion of the
tree that has already been constructed. Alternately, we can achieve
the same effect by concatenating the two genomes (separated by a
dummy character that does not occur in either genome) and
constructing a suffix tree from that single concatenated string.

Each leaf node in T is labeled to indicate which suffix it represents
in which genome, A or B. The system needs to identify the nodes in
the tree that correspond to MUMs. It is not hard to see that every
unique matching sequence is represented by an internal node with
exactly two child nodes, such that the child nodes are leaf nodes
from different genomes. The unique matches that are maximal can
be identified by mismatches at their ends. (MUMmer as actually
implemented determines whether a match is maximal based on
pointers used to construct the suffix tree.) Thus, in a single scan of
the suffix tree, all MUMs can be identified.

The main input parameter to the system, besides the genomes
themselves, is the length of the shortest MUM that the system will
identify. We typically do not want to report short MUMs that are
likely to be random matches. For highly similar genomes (as with
the two tuberculosis strains), we set this parameter to 50 bp.
However, for more distantly related genomes, fewer MUMs of
50 bp might exist, and therefore this parameter can be adjusted. For
aligning the two Mycoplasma species, we used a minimum MUM
length of just 20 bp.

Sorting the MUMs

After finding all the MUMs, we sort them according to their
position in Genome A. Now we consider the order of their
matching positions in Genome B. In some cases, e.g. a
transposition or reversal between the genomes, the B positions are
not in ascending order. See Figure 3 for an illustration. Here we
have assigned two integers to each MUM representing the ordinal
position of the subsequence in Genomes A and B. Since we have
sorted the MUMs by their A-positions, we can depict the
alignment as the single sequence of B-position integers.

We now employ a variation of the LIS algorithm (9) to find the
longest set of MUMs whose sequences occur in ascending order
in both Genome A and Genome B. Essentially, we want the LIS
contained in the sequence of B-position integers. For instance, if
the order of B positions is given by the sequence �1, 2, 10, 4, 5,
8, 6, 7, 9, 3�, the LIS is �1, 2, 4, 5, 6, 7, 9�. The LIS technique
allows us to browse the alignment from left to right, as well as
‘close the gaps’ in the alignment consistently. MUMmer imple-
ments a variation of this algorithm that takes into account the

Figure 3. Aligning Genome A and Genome B after locating the MUMs. Each
MUM is here indicated only by a number, regardless of its length. The top
alignment shows all the MUMs. The shift of MUM 5 in Genome B indicates
a transposition. The shift of MUM 3 could be simply a random match or part
of an inexact repeat sequence. The bottom alignment shows just the LIS of
MUMs in Genome B.

Figure 4. The four types of gaps in MUM alignment. These examples are drawn
from the alignment of the two M.tuberculosis genomes.

lengths of the sequences represented by the MUMs and the fact
that they can overlap.

An example of an initial MUM-alignment and the ordered
MUM-alignment that results from applying the LIS algorithm is
shown in Figure 3. The longest increasing sequence algorithm
requires O (K log K) time, where K is the number of MUMs. It
can also be implemented using a simpler dynamic programming
algorithm in O(K2) time. In general, K is much smaller than
N/log N so this step takes O(N) time.

Closing the gaps

Once a global MUM-alignment is found, we deploy several
algorithms for closing the local gaps and completing the
alignment. A gap is defined as an interruption in the MUM-
alignment which falls into one of four classes: (i) an SNP
interruption, (ii) an insertion, (iii) a highly polymorphic region or
(iv) a repeat. These classes are depicted in Figure 4.

SNP processing. The identification of SNPs is becoming an
increasingly important task in DNA sequence analysis, especially
as the number of sequences from closely related organisms
increases (23,24). SNPs in human DNA appear to be associated
with many important health issues, including genetic illnesses
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and disease susceptibility. SNPs manifest themselves in two ways
in the MUM alignment. In the simpler case, the SNP is
surrounded by maximal unique matching subsequences. In this
case our program easily identifies the SNP, which manifests itself
as a simple gap of one base between the MUMs. In some cases,
however, an SNP is adjacent to sequences that appear elsewhere
in one of the genomes; i.e., the adjacent sequences are not unique.
In this case the adjacent sequence plus the SNP is captured and
processed by the repeat processing procedure described below.

Insert detection. An insert is defined as a moderately large region
that appears in one genome and not the other. Such inserts are
easily detected as large gaps in the alignment in one genome and
not the other.

Inserts can be divided into two classes. Transpositions are
subsequences that have been deleted from one location and
inserted elsewhere (with respect to one of the genomes, of
course). These are detected during a post-processing step; they
appear in the MUM alignment out of sequence. Simple insertions
are subsequences that appear in only one of the genomes; these
may be the result of lateral transfer, simple deletions or other
evolutionary processes. Regardless of the cause, these simple
insertions can be identified as such because they do not appear in
the MUM alignment.

Polymorphic regions. Gaps in the MUM alignment can be also
caused by sequences that have large numbers of differences, but
that still should be aligned in the whole genome alignment.
Because the number of differences is high, it is less meaningful
to define these regions in terms of the SNPs; for example, if the
sequence identity is 25%, the sequences might be considered
highly homologous although the number of SNPs is triple the
number of conserved positions. If these regions are sufficiently
small, we align them with a standard dynamic programming
algorithm, essentially equivalent to Smith–Waterman (7). This
produces an optimal alignment with respect to pre-specified
insertion and mutation costs. For very large polymorphic regions,
we can apply our entire matching procedure recursively using a
reduced minimum MUM length, if desired.

Repeat processing. Repeat sequences do not appear in the MUM
alignment because, by definition, the MUM alignment only
includes sequences that appear exactly once in each genome. In
our comparison of the M.tuberculosis strains we found that most
repeats were tandem  repeats. In every case we found in
M.tuberculosis, repeat sequences were adjacent to unique
sequence, and the MUM on either end of a tandem repeat
extended into the repeat itself.  As a result, the MUM alignment
indicates a gap that is smaller than the length of the tandem repeat.
Also note that the MUMs overlap one another.

Figure 5 shows a tandem repeat with different copy numbers in
Genomes A and B. In this example, there are two MUMs:
(i) uniqueAAGGAAGG and (ii) AAGGAAGGsequence. Depend-
ing on how this region is aligned, the four-base gap could appear
anywhere between positions 6 and 14 (as shown) in the alignment.
(For consistency, MUMmer always shows the insertion at the
rightmost position.) The MUM alignment will indicate that MUM
(i) occupies positions 0...13, and MUM (ii) occupies positions
10...25 in Genome A. The fact that these two intervals overlap
indicates to the algorithm that a tandem repeat is present. The
difference in overlap length in the two genomes (the overlap is eight

Figure 5. Repeat sequences surrounded by unique sequences. For the purposes
of illustration, other characters besides the four DNA nucleotides are used.

bases in Genome B but only four bases in Genome A) indicates how
many additional repeat bases are inserted in one of the genomes.

RESULTS AND DISCUSSION

Comparing two strains of tuberculosis

We used MUMmer to perform a comparison of two strains of
tuberculosis that have recently been sequenced, H37Rv (4) and
CDC1551 (R.D.Fleischmann et al., manuscript in preparation).
H37Rv is a laboratory strain that has been in continuous culture for
>90 years, while CDC1551 is a recent clinical isolate that has
demonstrated itself to be highly virulent (25). Tuberculosis is known
to mutate relatively slowly (26), so despite the length of time that
these strains have had to diverge, their genomes are still >99%
identical (not counting several large repeat sequences that appear in
different copy numbers). Understanding the differences is critical to
understanding the different biological behavior of the two strains.

Running the two genomes through MUMmer produced a
whole-genome alignment that mapped every base of one genome
onto the other. Thus we were able to catalog all SNPs, all
insertions of every length, all tandem repeats with different copy
numbers and other miscellaneous differences. A detailed descrip-
tion of the biological consequences of this comparison will appear
elsewhere (R.D.Fleischmann et al., manuscript in preparation).

Our alignment revealed thousands of individual differences
between the two genomes, most of which were single base changes.
There were several dozen large insertions unique to each genome,
many of which contained genes or partial genes. An example is
shown in Figure 6, which shows a 15 kb region containing three
insertions and five point mutations. Using the display tool illustrated
in the figure, we were able not only to identify all the differences,
but also to identify which mutations were silent, which ones resulted
in a premature stop in one genome, and which of the many
differences occurred in intergenic regions. The tool allows the
investigator to click on any of the genes, which are linked to a live
database, and get a detailed report on that gene. The analysis showed
that, of those insertions that occurred in genes, ∼ 75% occurred in
hypothetical genes; i.e., genes with no homology to any known gene.
Because only 45% of the annotated genes are hypothetical, this
result suggests that some of the annotated hypothetical genes are not
real. MUMmer’s output also makes it easy to find very long identical
sequences: the longest such sequence shared between the two
genomes is 24 563 bp, and there are 246 MUMs >5000 bp in length.

The time required to generate the alignments was 55 s on a DEC
Alpha 4100, broken down as follows: 5 s for suffix tree
construction, 45 s for sorting the MUMs and finding the longest
increasing sequence and 5 s for generating the Smith–Waterman
alignments of the gaps. (Because the sequences are so close to
identical, the Smith–Waterman step needs to do very little work.)
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Figure 6. Alignment of M.tuberculosis strain CDC1551 (top) and H37Rv (bottom). This alignment was extracted from the graphical display tool developed to scan
and zoom in on the output of the genome alignment program. In the view shown, single green lines in the center connect single-base differences between the genomes.
Blue v-shaped lines indicate insertions. The first two v-shaped insertions are large insertions in the H37Rv strain, and the third insertion is a very small insertion in
CDC1551. This last insertion appears as a line rather than a v-shape due to the resolution of the displayed region. The genes from both genomes are displayed as arrows,
with color-coding to indicate the role assigned to each gene. Role assignments and gene IDs are taken from annotation of the TIGR and Sanger genome centers,
respectively. Note that both of the large insertions shown here contain genes. White lines (gaps) appearing in the middle of some arrows indicate silent mutations in
those genes. Point mutations that change an amino acid are displayed differently; none occur in this region. Either genome can be scrolled independently, and the scale
can be adjusted up or down, from viewing of individual bases all the way out to viewing the entire genome on the screen.

Comparing two Mycoplasma genomes

The H37Rv and CDC1551 strains of M.tuberculosis are highly
homologous, containing many subsequences thousands of nucleo-
tides long that are perfect matches. To test the limits of our system,
we turned to two bacteria that are ‘cousins’ but that are much more
distantly related. The genome of M.genitalium is 580 074 nt in
length, while M.pneumoniae is 816 394 nt. Clearly there are at least
226 000 nt of additional DNA in M.pneumoniae; however,
alignments of proteins indicate that nearly all of M.genitalium is
contained in M.pneumoniae (27). The protein alignments further
indicate that very large fragments of M.genitalium retain the same
order and orientation in M.pneumoniae. Thus, despite the
evolutionary distance between these organisms, we believed that it
might be possible to align them using MUMmer.

The system aligned these two genomes quite easily, as it turned
out. This was somewhat surprising given previous difficulties at
producing such an alignment using alternative methods. Not only
did it work, but it worked very fast: the suffix tree portion of the
computation took 6.5 s, while sorting and finding the LIS of
MUMs took 0.02 s (on a DEC Alpha 4100). Generating the
Smith–Waterman alignments of the gaps between the MUMs
took 116 s; not surprisingly, this was much slower than for the
tuberculosis genome comparison because of the larger amount of
sequence that fell into the gaps.

Figure 7 illustrates the alignment at the whole genome level.
Three different alignment methods were used in this figure. A
FASTA alignment was generated by dividing each genome into
1000 bp segments and using those segments in ‘all against all’

FASTA (11) searches. [In the comparison of the two Mycoplasma
that appeared previously (27), the FASTA and BLAST programs
were used in a similar manner to compare all genes to all genes,
omitting non-coding regions.] This analysis required many hours
of compute time. Pairs of sequences that were at least 50%
identical over 80% of the match appear as points in the plot. The
middle of Figure 7 illustrates a much simpler method, where
unique, exactly matching 25mers are plotted; this figure mimics
the MUM alignment but uses a fixed length for the MUMs. This
is less noisy than the FASTA alignment, but of course it only gives
a rough alignment. The bottom of Figure 7 shows the MUM
alignment, where each MUM appears as a point. This is the
cleanest and most continuous of the alignments, though of course
it contains many gaps. As the figure makes clear, the overall
alignment of these two genomes is basically a long series of short
(mostly 20–30 bp) exact matches strung together in the same
order and with the same spacing in both genomes. The longest
exactly matching sequence between the two genomes was only
281 bp and there are only 16 shared MUMs >100 bp. In total there
are 20 872 bp contained in shared MUMs of ≥15 bp, just 3.6% of
the shorter genome’s length.

The MUM alignment clearly shows five translocations of
M.genitalium sequence with respect to M.pneumoniae, in agree-
ment with the analysis of Himmelreich et al. (27). In the FASTA
and 25mer alignments, these translocations are either missing or
very difficult to identify amidst the noise.

In addition to the data shown in Figure 7, MUMmer also produces
a file containing the complete Smith–Waterman alignment of all the
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Figure 7. Alignment of M.genitalium and M.pneumoniae using FASTA (top), 25mers (middle) and MUMs (bottom). In all three plots, a point indicates a ‘match’
between the genomes. In the FASTA plot a point corresponds to similar genes. In the 25mer plot, each point indicates a 25-base sequence that occurs exactly once
in each genome. In the MUM plot, points correspond to MUMs as defined in the main text.

gaps between the MUMs. (See Figure 4 for an illustration of what
this output looks like.) Most of these aligned gaps were nearly
identical in length, and obviously corresponded to sequences with a
shared evolutionary history, but the sequence identity averaged
<50%, much lower than in the M.tuberculosis comparison. Taken
together, this data allows us to map every base of the smaller genome
to its corresponding position in the larger genome.

Comparing human and mouse

To test MUMmer on sequences even more distant than the two
Mycoplasmas, we chose a 222 930 bp subsequence of human
chromosome 12p13 (accession no. U47924) that is syntenic to a
227 538 bp contiguous subsequence of mouse chromosome 6
(accession no. AC002397). These sequences were the subject of
a recent study by Ansari-Lari et al. (28), who used a combination
of alignment tools to produce a detailed alignment. These tools
included DOTTER (29) for the initial comparison, a modified
version of SIM (30) to find good local alignments, percent

identity plots (pip) to display the results (31) and a program called
CONSERVED (32) to identify segments >50 bp with >60%
sequence identity in the SIM alignment. As reported in that study,
the nucleotide similarity for the coding portions of the 17 genes
in this region ranges from 70 to 92%, while the percent identity
for amino acids ranges from 56 to 100%.

Although our alignment does not contain all the details
generated and displayed by the combination of methods used in
Ansari-Lari et al., the overall alignment of the two sequences is
easily apparent from the output of our program. The program
required 29 s of CPU time to generate the complete alignment, of
which 1.6 s was used to build the suffix tree. The alignment using
15mers as the minimum MUM length contained several large
gaps corresponding to intergenic regions, as shown in Figure 8.
Re-running the program with minimum MUMs of 10 bp reduces
the gaps, but in either case one must examine the Smith–Water-
man algorithm output to see the complete alignment. The figure
also shows other MUMs falling outside the aligned region; these
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Figure 8. Alignment of a 222 930 bp subsequence of human chromosome
12p13, accession no. U47924, to a 227 538 bp subsequence of mouse
chromosome 6, accession no. AC002397. Each point in the plot corresponds to
an MUM of ≥15 bp.

are not included in the LIS, but are shown to illustrate the
relatively low ‘background’ of random matches in the 15 bp
MUM alignment.

The Smith–Waterman alignments of the regions between the
MUMs show that the aligned region stretches almost the entire
length of both sequences, containing 220 326 bp of the human
sequence and 223 751 of mouse. The total number of bases
contained in the MUM portion of the alignment is 14 026, or 6.3%
of the human sequence. Only 10 MUMs in the alignment are
>50 bp, with the longest being 117 bp.

SUMMARY

This paper describes MUMmer, a new system for high resolution
comparison of complete genome sequences. The system was used
to perform complete alignments of two pairs of genomes: the first
pair were two closely related strains of M.tuberculosis of some 4.4
million nucleotides each, while the second pair were two different
Mycoplasma bacteria that differed in length by almost half the
length of the shorter genome. We also compared two sequences
of ∼ 225 kb each from the genomes of human and mouse. We
expect many more closely related genomic sequences to appear
in the coming years, and the system described here should prove
useful in aligning those as well. We see no technical problems to
using MUMmer for comparing even the longest genomic
sequences, as long as sufficient computer memory is available.
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