Sequence Assembly Intro

Adam M. Phillippy

April 30, 2019
@aphillippy

NH ${ }^{\text {Natoman tuman Somome }}$ Research Institute

Slides courtesy of:
 Michael Schatz

Feb 4, 2019

Lecture 3:Applied Comparative Genomics

Second Generation Sequencing

Illumina HiSeq 2000
Sequencing by Synthesis
>60Gbp / day

2. Amplify

3. Image

Illumina Quality

QV	perror $\left.$40 $1 / 10000$ 30 $1 / 1000$ 20 $1 / 100$ 10 $1 / 10$${ }^{\mid} \right\rvert\,$

Typical sequencing coverage

Imagine raindrops on a sidewalk
We want to cover the entire sidewalk but each drop costs \$1

Poisson Distribution

The probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate and independently of the time since the last event.

Formulation comes from the limit of the binomial equation

Resembles a normal distribution, but over the positive values, and with only a single parameter.

Key properties:

- The standard deviation is the square root of the mean.
- For mean > 5, well approximated by a normal distribution

Normal Approximation

Pop Quiz!

I want to sequence a IOMbp genome to 24 x coverage. How many 120 bp reads do I need?

I need $10 \mathrm{Mbp} \times 24 \mathrm{x}=240 \mathrm{Mbp}$ of data $240 \mathrm{Mbp} / \mathrm{I} 20 \mathrm{bp} /$ read $=2 \mathrm{M}$ reads

I want to sequence a 10 Mbp genome so that
$>97.5 \%$ of the genome has at least $24 x$ coverage.
How many 120 bp reads do I need?
Find X such that $X-2 *$ sqrt $(X)=24$

$$
36-2 * \operatorname{sqrt}(36)=24
$$

Beware of GC Biases

- Illumina sequencing does not produce uniform coverage over the genome
- Coverage of extremely high or extremely low GC content will have reduced coverage in Illumina sequencing
- Biases primarily introduced during PCR; lower temperatures, slower heating, and fewer rounds minimize biases
- This makes it very difficult to identify variants (SNPs, CNVs, etc) in certain regions of the genome

Beware of Duplicate Reads

The Sequence alignment/map (SAM) format and SAMtools.
Li et al. (2009) Bioinformatics. 25:2078-9

Beware of (Systematic) Errors

Identification and correction of systematic error in high-throughput sequence data Meacham et al. (2011) BMC Bioinformatics. 12:451

Illumina Sequencing Summary

Advantages:

Best throughput, accuracy and read length
for any $2 n d$ gen. sequencer
Fast \& robust library preparation

Disadvantages:

Inherent limits to read length
(practically, 150bp)
Some runs are error prone
Requires amplification, sequences a population of molecules

> Illumina HiSeq
> ~3 billion paired 100bp reads
> $\sim 600 \mathrm{~Gb}, \$ 10 \mathrm{~K}, 8$ days (or "rapid run" ${ }^{\sim} 90 \mathrm{~Gb}$ in $1-2$ days)

Illumina X Ten
~6 billion paired 150bp reads
$1.8 \mathrm{~Tb},<3$ days, ~1000 / genome(\$\$) (or "rapid run" ~90Gb in 1-2 days)

Illumina NovaSeq
Population-scale sequencing

- G illumina - Google Search

Market summary >
Illumina, Inc.

NASDAQ: ILMN

+ Follow
Overview News Compare Financials
285.26 USD -2.42 (0.84\%) \downarrow

Closed: Jan 29, 4:18 PM EST - Disclaimer
After hours 280.40-4.86(1.70\%
After hours 280.40-4.86(1.70\%)

Outline

I. Assembly theory

- Assembly by analogy

2. Practical issues

- Coverage, read length, errors, and repeats

3. Recent advances in assembly

- PacBio, Nanopore, and Canu
- Dr. Sergey Koren (Thursday, May 2)

The exploding newspapers problem

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
- Text printed on 5 long spools

- How can he reconstruct the text?
-5 copies $\times 138,656$ words $/ 5$ words per fragment $=138 \mathrm{k}$ fragments
- The short fragments from every copy are mixed together
- Some fragments are identical

It was the best of
age of wisdom, it was
Greedy Reconstruction
best of times, it was
it was the age of
it was the age of
it was the worst of
of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,

```
It was the best of
    was the best of times,
        the best of times, it
            best of times, it was
                of times, it was the
                of times, it was the
```

 times, it was the worst
 times, it was the age
 The repeated sequence make the correct reconstruction ambiguous

- It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem
How long will it take to compute the overlaps?

de Bruijn Graph Construction

- $\mathrm{G}_{k}=(\mathrm{V}, \mathrm{E})$
- $\mathrm{V}=$ Length $-k$ sub-fragments
- $\mathrm{E}=$ Directed edges between consecutive sub-fragments
- Sub-fragments overlap by $k-1$ words

Fragments $|f|=5$

It was the best of
was the best of times

Sub-fragment $k=4$

was the best of the best of times

Directed edges (overlap by $k-1$)

- Overlaps between fragments are implicitly computed

After graph construction,

 try to simplify the graph as much as possible
de Bruijn Graph Assembly

The full tale

... it was the best of times it was the worst of times ...
... it was the age of wisdom it was the age of foolishness ...
... it was the epoch of belief it was the epoch of incredulity ...
... it was the season of light it was the season of darkness ...
... it was the spring of hope it was the winder of despair ...

Repeats, repeats, repeats...

Repeats, repeats, repeats...

Repeats only matter if longer than the k -mer length

Three classes of complexity

E. coli $(\mathrm{k}=50)$

Reducing assembly complexity of microbial genomes with single-molecule sequencing Koren et al (20I3) Genome Biology. I4:RIOI https://doi.org/l0.I I86/gb-20|3-|4-9-r IOI

Eulerian Tours

ARBRCRD
Or
ARCRBRD

Generally an exponential number of compatible sequences

- Value computed by application of the BEST theorem (Hutchinson, I975)

Assembly Complexity of Prokaryotic Genomes using Short Reads.

- Finding possible assemblies is easy!
- However, there is an astronomical genomical number of possible paths!
- Hopeless to figure out the whole genome/chromosome, figure out the parts that you can

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) BMC Bioinformatics.

Contig N50

Def: 50% of the genome is in contigs as large as the N50 value Example: I Mbp genome

N 50 size $=3 \mathrm{kbp}$

Contig N50

Def: 50% of the genome is in contigs as large as the N50 value

Better N50s improves the analysis in every dimension

- Better resolution of genes and flanking regulatory regions
- Better resolution of transposons and other complex sequences
- Better resolution of chromosome organization
- Better sequence for all downstream analysis

Just be careful of N50 inflation!

- A very very very bad assembler in I line of bash:
- cat *.reads.fa > genome.fa

$$
\text { N50 size }=3 \mathrm{kbp}
$$

Assemble these reads using a de Bruijn graph approach (k=3):

ATTA
GATT
TACA
TTAC

Pop Quiz I

Assemble these reads using a de Bruijn graph approach ($k=3$):

ATTA: ATT -> TTA
GATT: GAT -> ATT
TACA: TAC -> ACA
TTAC: TTA -> TAC

Pop Quiz I

Assemble these reads using a de Bruijn graph approach ($k=3$):
ATTA: ATT -> TTA
GATT: GAT -> ATT
TACA: TAC -> ACA
TTAC: TTA -> TAC

Pop Quiz 2

Assemble these reads using a de Bruijn graph approach ($\mathrm{k}=3$):

ACGA
ACGT
ATAC
CGAC
CGTA
GACG
GTAT
TACG

Pop Quiz 2

Assemble these reads using a de Bruijn graph approach ($\mathrm{k}=3$):

ACGA
ACGT
ATAC
CGAC

CGTA
GACG
GTAT
TACG

Pop Quiz 2

Assemble these reads using a de Bruijn graph approach ($\mathrm{k}=3$):

ACGA
ACGT
ATAC
CGAC
CGTA

GACG
GTAT
TACG

Pop Quiz 2

Assemble these reads using a de Bruijn graph approach ($\mathrm{k}=3$):

ACGA
ACGT
ATAC
CGAC
CGTA
GACG
GTAT
TACG

Pop Quiz 2

Assemble these reads using a de Bruijn graph approach ($\mathrm{k}=3$):

ACGA
ACGT
ATAC
CGAC
CGTA
GACG
GTAT
TACG

Pop Quiz 2

Assemble these reads using a de Bruijn graph approach ($\mathrm{k}=3$):

ACGA
ACGT
ATAC
CGAC
CGTA
GACG
GTAT
TACG

Pop Quiz 2

Assemble these reads using a de Bruijn graph approach ($\mathrm{k}=3$):

Pop Quiz 2

Assemble these reads using a de Bruijn graph approach ($\mathrm{k}=3$):
ACGA
-ACGT
ATAC
-CGAC
-CGTA
-GACG
-GTAT
-TACG

Pop Quiz 2

Assemble these reads using a de Bruijn graph approach ($\mathrm{k}=3$):

Pop Quiz 2

Assemble these reads using a de Bruijn graph approach ($\mathrm{k}=3$):

Pop Quiz 2

Assemble these reads using a de Bruijn graph approach ($\mathrm{k}=3$):

Assembly Applications

- Novel genomes

GENOME 10K。

- Sequencing assays
- Structural variations
- Transcript assembly
- ...
- Metagenomes
- •

Why are genomes hard to assemble?

I. Biological:

- (Very) High ploidy, heterozygosity, repeat content

2. Sequencing:

- (Very) large genomes, imperfect sequencing

3. Computational:

- (Very) Large genomes, complex structure

4. Accuracy:

- (Very) Hard to assess correctness

Assembling a Genome
 I. Shear \& Sequence DNA

2. Construct assembly graph from reads (de Bruijn / overlap graph) ...AGCCTAGGGATGCGCGACACGT

GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC
CAACCTCGGACGGACCTCAGCGAA...
3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Read Length

Reads $\&$ mates must be longer than the repeats

- Short reads will have false overlaps forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Quality

Errors obscure overlaps

- Reads are assembled by finding
kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Kmer-based Coverage Analysis

Even though the reads are not assembled or aligned (or reference available), Kmer counting is an effective technique to estimate coverage \& other genome properties

Quake: quality-aware detection and correction of sequencing reads.

Heterozygous Kmer Profiles

0.1% heterozygosity

1\% heterozygosity

5\% heterozygosity

- Heterozygosity creates a characteristic "double-peak" in the Kmer profile
- Second peak at twice k-mer coverage as the first: heterozygous kmers average 50x coverage, homozygous kmers average 100x coverage
- Relative heights of the peaks is directly proportional to the heterozygosity rate
- The peaks are balanced at around 1.25% because each heterozygous SNP creates 2*k heterozygous kmers (typically k=21)

GenomeScope: Fast genome analysis from short reads http://genomescope.org

GenomeScope Profile
len:152,727,721bp uniq: 68.7% het:1.07\% kcov:22.1 err:0.337\% dup:0.463

- Theoretical model agrees well with published results:
- Rate of heterozygosity is higher than reported by other approaches but likely correct.
- Genome size of plants inflated by organelle sequences (exclude very high freq. kmers)

Error Correction with Quake

I. Count all "Q-mers" in reads

- Fit coverage distribution to mixture model of errors and regular coverage
- Automatically determines threshold for trusted k-mers

2. Correction Algorithm

- Considers editing erroneous kmers into trusted kmers in decreasing likelihood
- Includes quality values, nucleotide/nucleotide substitution rate

Quake: quality-aware detection and correction of sequencing reads.

Unitigging

- After simplification and correction, compress graph down to its non-branching initial contigs
- Aka "unitigs","unipaths"

Why do contigs end?

(1) End of chromosome! © , (2) lack of coverage, (3) errors,
(4) heterozygosity and (5) repeats

Errors in the graph

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$\left(\mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{k}}\right)^{\mathrm{N}}$ where 1 $\leq \mathrm{k} \leq 6$ CACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	Alu sequence ($\sim 280 \mathrm{bp})$ Mariner elements ($\sim 80 \mathrm{bp})$	13%
LINEs (Long Interspersed Nuclear Elements)	$\sim 500-5,000 \mathrm{bp}$	21%
LTR (long terminal repeat) retrotransposons	Ty1-copia, Ty3-gypsy, Pao-BEL $(\sim 100-5,000 \mathrm{bp})$	8%
Other DNA transposons		3%
Gene families \& segmental duplications		4%

- Over 50% of mammalian genomes are repetitive
- Large plant genomes tend to be even worse
- Wheat: 16 Gbp ; Pine: 24 Gbp

Repeats and Coverage Statistics

- If n reads are a uniform random sample of the genome of length G, we expect $k=n \Delta / G$ reads to start in a region of length Δ.
- If we see many more reads than k (if the arrival rate is $>A$), it is likely to be a collapsed repeat

$$
\operatorname{Pr}(X-\text { copy })=\binom{n}{k}\left(\frac{X \Delta}{G}\right)^{k}\left(\frac{G-X \Delta}{G}\right)^{n-k} \quad A(\Delta, k)=\ln \left(\frac{\operatorname{Pr}(1-\text { copy })}{\operatorname{Pr}(2-\text { copy })}\right)=\ln \left(\frac{\frac{(\Delta n / G)^{k}}{k!} e^{\frac{-\Delta n}{G}}}{\frac{(2 \Delta n / G)^{k}}{k!} e^{\frac{-2 \Delta n}{G}}}\right)=\frac{n \Delta}{G}-k \ln 2
$$

Paired-end and Mate-pairs

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation

Mate-pair sequencing

- Circularize long molecules (I-IOkbp), shear into fragments, \& sequence
- Mate failures create short paired-end reads

10kbp

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
- Coverage gaps: especially extreme GC
- Conflicts: errors, repeat boundaries
- Use mate-pairs to resolve correct order through assembly graph

- Place sequence to satisfy the mate constraints
- Mates through repeat nodes are tangled
- Final scaffold may have internal gaps called sequencing gaps
- We know the order, orientation, and spacing, but just not the bases. Fill with Ns instead

Assembly Summary

Assembly quality depends on
I. Coverage: low coverage is mathematically hopeless
2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats
4. Error rate: errors reduce coverage, obscure true overlaps

- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
- Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats \& other misassemblies

Two Paradigms for Assembly

de Bruijn Graph
Short read assemblers

- Repeats depends on word length
- Read coherency, placements lost \quad\begin{tabular}{l}
- Rong read assemblers

- Robust to high coverage
\end{tabular}

De Bruijn graph vs. Overlap graph

- De Bruijn
- O(N) complexity
- Depends on large k to overcome repeats
- Depends on small k to avoid errors
- Overlap
- $\mathrm{O}\left(\mathrm{N}^{2}\right)$ complexity with naive implementation
- Uses the full length of the reads
- More robust to errors

