CMSC424: Database Design Introduction/Overview

Instructor: Amol Deshpande amol@cs.umd.edu

Today

- Motivation: Why study databases ? What is databases ?
- Administrivia
 - Workload etc.
- Current Industry Outlook
- A typical DBMS at a glance
- No laptop use allowed in the class !!

Some To-Dos

- Sign up for CampusWire !
- Set up the computing environment (project0), and make sure you can run Docker, PostgreSQL, IPython, etc.
- Upcoming: Reading Homework 1, Project 1: SQL

- Explosion of data, in pretty much every domain
 - Sensing devices and sensor networks that can monitor everything 24/7 from temperature to pollution to vital signs
 - Increasingly sophisticated smart phones
 - Internet, social networks makes it easy to publish data
 - Scientific experiments and simulations produce astronomical volumes of data
 - Internet of Things
 - <u>Dataification</u>: taking all aspects of life and turning them into data (e.g., what you like/enjoy turned into a stream of your "likes")
- How to handle that data? How to extract interesting actionable insights and scientific knowledge?
- Data volumes expected to get much worse

Four V's of Big Data

Increasing data Volumes

- <u>Scientific data</u>: 1.5GB/genome -- can be sequenced in .5 hrs; LHC generates 100TB of data a day
- 500M tweets per day (as of 2013)
- As of 2012: 2.5 Exabytes of data created every day
- EBay: Two data warehouses with 7.5PB and 40PB
- Walmart: 583 terabytes of sales and inventory data
- FICO monitors 2.5 billion active accounts worldwide
- Variety:
 - Structured data, spreadsheets, photos, videos, natural text, ...
- Velocity
- Veracity

Four V's of Big Data

- Increasing data Volumes
- Variety
- Velocity
 - Sensors everywhere -- can generate tremendous volumes of "data streams"
 - Real-time analytics requires data to be consumed as fast as it is generated
- Veracity
 - How do you decide what to trust? How to remove noise? How to fill in missing values?

Big Data and Data Science to the Rescue

- Terms increasingly used synonymously: also data analytics, data mining, business intelligence
 - Loosely used for any process where interesting things are inferred from data
 - Google search: "How Big Data Will Change"
- Data scientist called the sexiest job of the 21st century
 - The term has becoming very muddled at this point
- Overhyped words
 - We are headed toward the trough of Disillusionment

Is it all hype?

- No: Extracting insights and knowledge from data very important, and will continue to increase in importance
 - Big data techniques are revolutionizing things in many domains like Education, Food Supply, Disease Epidemics, ...
- But: it is not much different from what we, especially statisticians, have been doing for many years
- What is different?
 - Much more data is digitally available than was before
 - Inexpensive computing + Cloud + Easy-to-use programming frameworks = Much easier to analyze it
 - Often: large-scale data + simple algorithms > small data + complex algorithms
 - Changes how you do analysis dramatically

- How do we do anything with this data?
- Where and how do we store it ?
 - Disks are doubling every 18 months or so -- not enough
 - In many cases, the data is not actually recorded as it is; summarized first
- What if the disks crash ?
 - Very common, especially with 10,000's of disks
- How do we ensure "correctness" ?
 - What if the system crashes in the middle of an ATM transaction ?
 - Can't have money disappearing
 - What happens when a million people try to buy tickets to <your favorite artist>'s concert at the same time ?

- What to do with the data ? How to process/analyze it ?
 - text search ?
 - Very limited
 - "find the stores with the maximum increase in sales in last month"
 - We can't expect the users to write Java programs
 - "how much time from here to Pittsburgh if I start at 2pm ?"
 - Data is there; more will be soon (GPS, live traffic data)
 - Requires predictive capabilities
 - Increasing need to convert "information" to "knowledge": Data mining
 - "How many DVDs should we order?" (Netflix)
 - Find videos with this type of an event (say car break-ins)
 - Mine the "blogs" to detect "buzz"

- Speed !!
 - With TB's of data, just finding something (even if you know what), is not easy
 - Reading a file with TB of data can take hours
 - Imagine a bank and millions of ATMs
 - How much time does it take you to do a withdrawal ?
 - The data is not local
- How do we guarantee the data will be there 10 years from now ?
- Privacy and security !!!
 - Every other day we see some database leaked on the web
 - How to make sure different users' data is protected from each other

Why not use file systems ?

- Drawbacks of using file systems to store data:
 - Data redundancy and inconsistency
 - Multiple file formats, duplication of information in different files
 - Difficulty in accessing data
 - Need to write a new program to carry out each new task
 - Data isolation multiple files and formats
 - Integrity problems
 - Integrity constraints (e.g., account balance > 0) become "buried" in program code rather than being stated explicitly
 - Hard to add new constraints or change existing ones

Why not use file systems ?

- Drawbacks of using file systems to store data:
 - Atomicity of updates
 - Failures may leave database in an inconsistent state with partial updates carried out
 - Example: Transfer of funds from one account to another should either complete or not happen at all
 - Concurrent access by multiple users
 - Concurrent access needed for performance
 - Uncontrolled concurrent accesses can lead to inconsistencies
 - Example: Two people reading a balance (say 100) and updating it by withdrawing money (say 50 each) at the same time
 - Security problems
 - Hard to provide user access to some, but not all, data

Today

- Motivation: Why study databases ? What is databases ?
- Administrivia
 - Workload etc.
- Current Industry Outlook
- A typical DBMS at a glance
- No laptop use allowed in the class !!

Today

Motivation: Why study databases ? What is databases ?

- Key Concept: Data Modeling
- Key Concept: Data Abstraction
- Database Design
- Administrivia
 - Workload etc.
- Current Industry Outlook
- A typical DBMS at a glance
- No laptop use allowed in the class !!

DBMSs to the Rescue

- Provide a systematic way to answer many of these questions...
- Aim is to allow easy management of high volumes of data
 - Storing , Updating, Querying, Analyzing
- What is a Database ?
 - A large, integrated collection of (mostly structured) data
 - Typically models and captures information about a real-world *enterprise*
 - Entities (e.g. courses, students)
 - Relationships (e.g. John is taking CMSC 424)
 - Usually also contains:
 - Knowledge of constraints on the data (e.g. course capacities)
 - Business logic (e.g. pre-requisite rules)
 - Encoded as part of the data model (preferable) or through external programs

DBMSs to the Rescue

- Massively successful for highly structured data
 - Why ? Structure in the data (if any) can be exploited for ease of use and efficiency
 - If there is no structure in the data, hard to do much
 - Contrast managing emails vs managing photos
 - Much of the data we need to deal with is highly structured
 - Some data is *semi-structured*
 - E.g.: Resumes, Webpages, Blogs etc.
 - Some has complicated structure
 - E.g.: Social networks
 - Some has no structure
 - E.g.: Text data, Video/Image data etc.

Structured vs Unstructured Data

- > A lot of the data we encounter is structured
 - Some have very simple structures
 - E.g. Data that can be represented in tabular forms
 - Significantly easier to deal with
 - We will focus on such data for much of the class

Account					
bname	acct_no	balance			
Downtown	A-101	500			
Mianus	A-215	700			
Perry	A-102	400			
R.H	A-305	350			

Customer					
cname	cstreet	ccity			
Jones	Main	Harrison			
Smith	North Main	Kye Harrison			
Curry	North	Rye			
Lindsay	Park	Pittsfield			

Structured vs Unstructured Data

- Some data has a little more complicated structure
 - E.g graph structures
 - Map data, social networks data, the web link structure etc
 - Can convert to tabular forms for storage, but may not be optimal
 - Queries often reason about graph structure
 - Find my "Erdos number"
 - Suggest friends based on current friends
 - Growing importance in recent years in a variety of domains: Biological, social networks, web...

Structured vs Unstructured Data

- Increasing amount of data in a semi-structured format
 - XML Self-describing tags (HTML ?)
 - Complicates a lot of things
 - We will discuss this toward the end
- A huge amount of data is unfortunately unstructured
 - Books, WWW
 - Amenable to pretty much only text search... so far
 - Information Retreival research deals with this topic
 - What about Google search ?
 - Google search is mainly successful because it uses the structure (in its original incarnation)
- Video ? Music ?
 - Can represent in DBMS's, but can't really operate on them

<symbol>List</symbol>			
<function></function>			
<symbol>List</symbol>			
<symbol>Automatic</symbol>			
<number>4.</number>			
<function></function>			
<symbol>List</symbol>			
<symbol>Automatic</symbol>			
<number>6.</number>			
			•
/Notebook>			•
	4	•	
	1	P	

circle size == page importance == pagerank more incoming links → higher pagerank incoming links from important pages → higher pagerank

DBMSs to the Rescue

- Massively successful for highly structured data
 - Why ? Structure in the data (if any) can be exploited for ease of use and efficiency
 - How ?
 - Two Key Concepts:
 - Data Modeling: Allows reasoning about the data at a high level
 - e.g. "emails" have "sender", "receiver", "..."
 - Once we can describe the data, we can start "querying" it
 - <u>Data Abstraction/Independence:</u>
 - Layer the system so that the users/applications are insulated from the low-level details

DBMSs to the Rescue: Data Modeling

- Data modeling
 - **Data model**: A collection of concepts that describes how data is represented and accessed
 - Schema: A description of a specific collection of data, using a given data model
 - Some examples of data models that we will see
 - Relational, Entity-relationship model, XML. JSON...
 - Object-oriented, object-relational, semantic data model, RDF...
 - Why so many models ?
 - Tension between descriptive power and ease of use/efficiency
 - More powerful models \rightarrow more data can be represented
 - More powerful models \rightarrow harder to use, to query, and less efficient

DBMSs to the Rescue: Data Abstraction

- Probably <u>the</u> most important purpose of a DBMS
- Goal: Hiding <u>low-level details</u> from the users of the system
 - Alternatively: the principle that
 - applications and users should be insulated from how data is structured and stored
 - Also called <u>data independence</u>
- Through use of *logical abstractions*

Data Abstraction

Data Abstraction

Data Abstractions: Example

What about a Database System ?

- A DBMS is a software system designed to store, manage, facilitate access to databases
- Provides:
 - Data Definition Language (DDL)
 - For defining and modifying the schemas
 - Data Manipulation Language (DML)
 - For retrieving, modifying, analyzing the data itself
 - Guarantees about correctness in presence of failures and concurrency, data semantics etc.
- Common use patterns
 - Handling transactions (e.g. ATM Transactions, flight reservations)
 - Archival (storing historical data)
 - Analytics (e.g. identifying trends, Data Mining)

Relational DBMS: SQL

- **SQL** (sequel): Structured Query Language
- Data definition (DDL)
 - create table instructor (

IDchar(5),namevarchar(20),dept_namevarchar(20),salarynumeric(8,2))

Data manipulation (DML)

Example: Find the name of the instructor with ID 22222
select name
from instructor
where instructor.ID = '22222'

Current Industry Outlook

Relational DBMSs

- Oracle, IBM DB2, Microsoft SQL Server, Sybase, Amazon RDS/Aurora
- Open source alternatives
 - MySQL, PostgreSQL, BerkeleyDB (mainly a storage engine no SQL) ...
- Other Data Models
 - Neo4j (Graph), MongoDB (Document), CosmosDB (many)
- Data Warehousing Solutions
 - Geared towards very large volumes of data and on analyzing them
 - Long list: Teradata, Oracle Exadata, Netezza (based on FPGAs), Aster Data (founded 2005), Vertica (column-based), Kickfire, Xtremedata..
 - Usually sell package/services and charge per TB of managed data
 - Many (especially recent ones) start with MySQL or PostgreSQL and make them parallel/faster etc..

Web Scale Data Management, Analysis

Ongoing debate/issue

- Cloud computing seems to eschew DBMSs in favor of homegrown solutions
- E.g. Google, Facebook, Amazon etc...
- MapReduce: A paradigm for large-scale data analysis
 - Hadoop: An open source implementation
 - Apache Spark: a better open source implementation
- Why?
 - DBMSs can't scale to the needs, not fault-tolerant enough
 - These apps don't need things like transactions, that complicate DBMSs (???)
 - Mapreduce favors Unix-style programming, doesn't require SQL
 - Try writing SVMs or decision trees in SQL
 - Cost
 - Companies like Teradata may charge \$100,000 per TB of data managed

Current Industry Outlook

Bigtable-like

- Called "key-value stores"
- Think highly distributed hash tables
- Allow some transactional capabilities still evolving area
- PNUTS (Yahoo), Apache Cassandra (Facebook), Dynamo (Amazon), and many many others

Mapreduce-like

- Hadoop (open source), Pig (@Yahoo), Dryad (@Microsoft), Spark
- Amazon EC2 Framework
- Not really a database but increasing declarative SQL-like capabilities are being added (e.g. HIVE at Facebook)
- Much ongoing research in industry and academia

DBMS at a glance

- Data Models
 - Conceptual representation of the data
- Data Retrieval
 - How to ask questions of the database
 - How to answer those questions
- Data Storage
 - How/where to store data, how to access it
- Data Integrity
 - Manage crashes, concurrency
 - Manage semantic inconsistencies
- Not fully disjoint categorization !!

What we will cover...

- We will mainly discuss structured data
 - That can be represented in tabular forms (called Relational data)
 - We will spend some time on XML
 - We will also spend some time on Mapreduce-like stuff
- Still the biggest and most important business (?)
 - Well defined problem with really good solutions that work
 - Contrast XQuery for XML vs SQL for relational
 - Solid technological foundations

Many of the basic techniques however are directly applicable

- E.g. reliable data storage etc.
- Cf. Many recent attempts to add SQL-like capabilities, transactions to Mapreduce and related technologies
 - E.g., Spark DataFrames

What we will cover...

- representing information
 - data modeling
 - semantic constraints
- Ianguages and systems for querying data
 - complex queries & query semantics
 - over massive data sets
- concurrency control for data manipulation
 - ensuring transactional semantics
- reliable data storage
 - maintain data semantics even if you pull the plug
 - fault tolerance

What we will cover...

- representing information
 - data modeling: *relational models, E/R models, XML/JSON*
 - semantic constraints: integrity constraints, triggers
- Ianguages and systems for querying data
 - complex queries & query semantics: SQL
 - over massive data sets: indexes, query processing, optimization, parallelization/cluster processing, streaming
- concurrency control for data manipulation
 - ensuring transactional semantics: ACID properties, distributed consistency
- reliable data storage
 - maintain data semantics even if you pull the plug: *durability*
 - fault tolerance: *RAID*

Summary

- Why study databases ?
 - Shift from computation to information
 - Always true in *corporate* domains
 - Increasing true for *personal* and *scientific* domains
 - Need has exploded in recent years
 - Data is growing at a very fast rate
 - Solving the data management problems is going to be a key
- Database Management Systems provide
 - Data abstraction: Key in evolving systems
 - Guarantees about data integrity
 - In presence of concurrent access, failures...
 - Speed !!

Logistics

- Instructor: Amol Deshpande
 - 5154 IRB
 - <u>amol@cs.umd.edu</u>
 - Class Webpage:
 - Off of <u>http://www.cs.umd.edu/~amol</u>,
 - Or <u>http://www.cs.umd.edu/class</u>
- Email to me: write CMSC424 in the title.
- TAs: Shruti Bidwalkar, Richard Johnson, Abhilasha Sancheti, Wichayaporn Wongkamjan

Logistics

- Textbook:
 - Database System Concepts
 - Sixth Edition
 - Abraham Silberschatz, Henry F. Korth, S. Sudarshan
- Lecture notes will be posted on the webpage

CampusWire

- We will use this in place of a newsgroup
- First resort for any questions
- General announcements will be posted there
- Register today !

Administrivia Break

Workload:

- 6 (individual) programming projects (30%)
 - 10 late days in total, no more than 4 for any project
- 2 midterms (30%), Final (25%)
- Reading homeworks (11%)
 - One every week (can get full credit with 11/13)
 - Assigned reading, simple questions on the reading (to ensure you read it) and homework on the previous week's material
 - Readings will refer to the Sixth edition of the book
 - Expect to spend about 1.5-2 hours on each
 - With the exception of the ones for the cancelled classes
- Class/Forum participation (4%)
 - May do in-class activities later

Logistics

Project 1: SQL (out by tomorrow)

 May want to get started on this soon since it covers the same stuff as the first reading homework

Reading Homeworks Due			Midterms/Final		Projects Due		
	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
January	27	28	29	30	31	1	2
February	3	4	5	6	7	8	9
	10	11	12	13	14	15	16
	17	18	19	20	21	22	23
	24	25	26	27	28	29	1
March	2	3	4	5	6	7	8
	9	10	11	12	13	14	15
	16	17	18	19	20	21	22
	23	24	25	26	27	28	29
	30	31	1	2	3	4	5
April	6	7	8	9	10	11	12
	13	14	15	16	17	18	19
	20	21	22	23	24	25	26
	27	28	29	30	1	2	3
Мау	4	5	6	7	8	9	10
-	11	12	13	14	15	16	17
	18						

Logistics

Grading

- Approximate cut-offs
- 80+: A
- 70+: B
- 60+: C
- 60-: D/F
- Most had 35+ on non-exams last two times (out of 45)
 - Exams are usually somewhat harder (no curves)
 - We would enforce a minimum passing grade on the total exam score

Some To-Dos

- Sign up for CampusWire !
- Set up the computing environment (project0), and make sure you can run Vagrant+VirtualBox, PostgreSQL, Jupyter, etc.
- Upcoming: Reading Homework 1 (Due next Monday), Project 1: SQL