CMSCA424: Database Design
sSQlL

February 17, 2020

Instructor: Amol Deshpande

amol@cs.umd.edu

Today’s Plan

» SQL (Chapter 3, 4) — Remaining Stuff
o Triggers (5.3)
o Authorization (4.6), Ranking (5.5)
> Some Complex SQL Examples

» Project 1 discussion on Wednesday

» Entity-Relationship Modeling

» Wednesday: Anatomy of a Web Application
° Project 2

Triggers

» A trigger is a statement that is executed automatically

by the system as a side effect of a modification to the
database.

» Suppose that instead of allowing negative account
balances, the bank deals with overdrafts by
o 1. setting the account balance to zero
o 2. creating a loan in the amount of the overdraft

o 3. giving this loan a loan number identical to the account
number of the overdrawn account

Trigger Example in SQL:1999

create trigger overdraft-trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < 0
begin atomic
actions to be taken

end

Trigger Example in SQL:1999

create trigger overdraft-trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < 0
begin atomic
insert into borrower
(select customer-name, account-number

from depositor
where nrow.account-number = depositor.account-number);

insert into /oan values
(nrow.account-number, nrow.branch-name, nrow.balance);

update account set balance =0
where account.account-number = nrow.account-number

end

Triggers...

» External World Actions
> How does the DB order something if the inventory is low ?

» Syntax
> Every system has its own syntax

» Careful with triggers
o Cascading triggers, Infinite Sequences...

» More Info/Examples:

o http://www.adp-gmbh.ch/ora/sql/create_trigger.html
o Google: “create trigger” oracle download-uk

http://www.adp-gmbh.ch/ora/sql/create_trigger.html

Recursion in SQL

» Example: find which courses are a prerequisite, whether directly or
indirectly, for a specific course

with recursi urse_id, prereq_id) as (
select courseid, prereq_id

from prereq

union
select rec_prereq.course _id, prereq.prereq_id,
frotn rec_rereq, p)ereq
where rec—prereq.prereq_id = prereq.course_id
select *

from rec_prereq;

Makes SQL Turing Complete (i.e., you can write any program in SQL)

Ranking

» Ranking is done in conjunction with an order by specification.

» Consider: student _grades(ID, GPA)

» Find the rank of each student.

select /D, rank() over (order by GPA desc) as s_rank
from student _grades
order by s _rank

» Equivalent to:

select ID, (1 + (select count(*)

from student _grades B

where B.GPA > A.GPA)) as s_rank
from student _grades A
order by s_rank;

Authorization/Security

» GRANT and REVOKE keywords

o grant select on instructor to U,, U,, U;
> revoke select on branch from U, U,, U;

» Can provide select, insert, update, delete priviledges

» Can also create “Roles” and do security at the level of roles

Ill

» Some databases support doing this at the level of individual “tuples”

o MS SQL Server: https://docs.microsoft.com/en-us/sgl/relational-databases/security/row-level-

security?view=sgl-server-verl5
o PostgreSQL: https://www.postgresql.org/docs/10/ddl-rowsecurity.html

https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security%3Fview=sql-server-ver15

Fun with SQL

4

> Long slide-deck linked off of this page

o Complex SQL queries showing how to do things like: do
Mandelbrot, solve subset sum problem etc.

» The MADIib Analytics Library or MAD Skills, the SQL;

» https://www.red-gate.com/simple-talk/blogs/statistics-
sql-simple-linear-regressions/

https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-think-were-possible/
https://arxiv.org/abs/1208.4165

1. Everything is a Table

1| SELECT * 1| SELECT *

2| FROM (2| FROM (

3 SELECT * 3 VALUES(1),(2),(3)
4 FROM person 40) tla)

51Dt

Everything is a table. In PostgreSQL, even functions are tables:

11 SELECT *
2 | FROM substring('abcde', 2, 3)

https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-
think-were-possible/

https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-think-were-possible/

2. Recursion can be very powerful

1| WITH RECURSIVE t(v) AS (

SELECT 1 -- Seed Row

UNION ALL

SELECT v + 1 -- Recursion Makes SQL

FROM t Turing-Complete

)

SELECT v
FROM t
LIMIT 5

It yields

https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-
think-were-possible/

https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-think-were-possible/

3. Window Functions

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
----------- L S S S S
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 | 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 | 4800 | 4866.6666666666666667
sales | 1 | 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

https://www.postgresql.org/docs/9.3/tutorial-window.html

https://www.red-gate.com/simple-talk/blogs/statistics-sql-simple-linear-regressions/

4. Correlation Coefficient

SET ARITHABORT ONj;

DECLARE @QurData TABLE
(
x NUMERIC (18, 6) NOT NULL,
y NUMERIC (18,6) NOT NULL
)7
INSERT INTO @OurData
(x, vy)
SELECT
X,y
FROM (VALUES
(1,32),(1,23), (3,50), (11,37), (-2,39), (10,44), (27,32), (25,16), (20,23),
(4,5),(30,41), (28,2), (31,52), (29,12), (50,40), (43,18), (10, 65), (44, 26),
(35,15), (24,37), (52,66), (59,46), (64,95), (79,36), (24,66), (69,58), (88,56),
(61,21), (100,60), (62,54), (10,14), (22,40), (52,97), (81,26), (37,58), (93,71)
(64,82), (24,33),(112,49), (64,90), (53,90), (132,61), (104,35), (60,52),
(29,50), (85,116), (95,104), (131,37), (139,38), (8,124)
) £(x,y)
SELECT
((Sy * Sxx) - (Sx * Sxy))
/ ((N * (Sxx)) - (Sx * Sx)) AS a,
((N * Sxy) - (Sx * Sy))
/ ((N * Sxx) - (Sx * Sx)) AS b,
((N * Sxy) - (Sx * Sy))
/ SQRT (
(((N * Sxx) - (Sx * Sx))
* ((N * Syy — (Sy * Sy))))) AS ¢
FROM
(
SELECT SUM([@OurData].x) AS Sx, SUM([@OurData].y) AS Sy,
SUM([ROurData] .x * [R@OurData].x) AS Sxx,
SUM([@OurData] .x * [@QOurData].y) AS Sxy,
SUM([@OurDatal] .y * [@QOurDatal].y) AS Syy,
COUNT (*) AS N
FROM @OurData
) sums;

5. Page Rank

Recursive algorithm to assign weights to
the nodes of a graph (Web Link Graph)

Weight for a node depends on the
weights of the nodes that point to it

Typically done in iterations till
“convergence”

Not obvious that you can do it in SQL,
but:

o Each iteration is just a LEFT OUTERJOIN
o Stopping condition is trickier

Other ways to do it as well

https://devhambi.com/2013/pagerank.html

declare @DampingFactor decimal(3,2) = 0.85 --set the damping factor
,@arginOfError decimal(10,5) = 0.001 --set the stable weight
,@TotalNodeCount int
,@IterationCount int = 1

-- we need to know the total number of nodes in the system
set @TotalNodeCount = (select count(*) from Nodes)

-- iterate!
WHILE EXISTS
(
-- stop as soon as all nodes have converged
SELECT *
FROM dbo.Nodes
WHERE HasConverged = @
D)
BEGIN

UPDATE n SET
NodeWeight = 1.0 - @DampingFactor + isnull(x.TransferWeight, 0.0)

-- a node has converged when its existing weight is the same as the weight it would be given
-- (plus or minus the stable weight margin of error)
,HasConverged = case when abs(n.NodeWeight - (1.0 - @DampingFactor + isnull(x.TransferWeight, 0.0))) < @MarginOfError then 1
else @ end
FROM Nodes n
LEFT OUTER JOIN
(
-- Here's the weight calculation in place
SELECT
e.TargetNodeld
,TransferWeight = sum(n.NodeWeight / n.NodeCount) * @DampingFactor
FROM Nodes n
INNER JOIN Edges e
ON n.NodeId = e.SourceNodeld
GROUP BY e.TargetNodeId
) as x
ON x.TargetNodeId = n.NodeId

-- for demonstration purposes, return the value of the nodes after each iteration
SELECT
@IterationCount as IterationCount
*

FROM Nodes

set @IterationCount += 1
END

Today’s Plan

» SQL (Chapter 3, 4) — Remaining Stuff

» Entity-Relationship Modeling

o Entity-relationship Model (E/R model)
> Converting from E/R to Relational

» Wednesday: Anatomy of a Web Application
° Project 2

Entity-Relationship Model

» Two key concepts
o Entities:

* An object that exists and is distinguishable from other objects
- Examples: Bob Smith, BofA, CMSC424

* Have attributes (people have names and addresses)

* Form entity sets with other entities of the same type that share the
same properties

- Set of all people, set of all classes

* Entity sets may overlap

* Customers and Employees

Entity-Relationship Model

» Two key concepts

o Relationships:

* Relate 2 or more entities
- E.g. Bob Smith has account at College Park Branch

* Form relationship sets with other relationships of the same type
that share the same properties

« Customers have accounts at Branches

* Can have attributes:

* has account at may have an attribute start-date

* Can involve more than 2 entities

- Employee works at Branch at Job

Entities and relationships

Two Entity Sets

76766

Crick

45565

Katz

10101

Srinivasan

98345

Kim

76543

Singh

22222

Einstein

instructor

98988

Tanaka

12345

Shankar

00128

Zhang

76543

Brown

76653

Aoi

23121

Chavez

44553

Peltier

student

Advisor Relationship, with and without attributes

76766

Crick

45565

Katz

98988

Tanaka

10101

Srinivasan

]

98345

Kim

76543

Singh

22222

Einstein

instructor

12345

Shankar

I

00128

Zhang

I

76543

Brown

I

76653

Aoi

23121

Chavez

| 76766 | Crick

| 45565 Katz

]
F

| 10101 | Srinivasan |\

98345| Kim

| 76543 Singh

| 22222 | Einstein

I A A A

I

44553

Peltier

student

instructor

6 June 2009

30 June 2007
31 May 2007

4 May 2006

12 June 2006

student

20

ER Diagram

date

instructor /\ student
ID advisor ID
name \/ namnie

salary tot_cred

Alternative representation,

used in the book in the past
(cust-name) (number)

Both notations used |Customer account |

commonly -
(cust-city) balance)

Rest of the class

» Details of the ER Model

> How to represent various types of constraints/semantic
information etc.

» Design issues

» A detailed example

Next: Relationship Cardinalities

» We may know:

* One customer can only open one account
OR
* One customer can open multiple accounts

» Representing this is important
» Why ?

o Better manipulation of data

* |f former, can store the account info in the customer table
> Can enforce such a constraint
* Application logic will have to do it; NOT GOOD

°© Remember: If not represented in conceptual model, the domain
knowledge may be lost

Mapping Cardinalities

» Express the number of entities to which another entity
can be associated via a relationship set

» Most useful in describing binary relationship sets

Mapping Cardinalities

» One-to-One | Instructor @

4 One-to-Many | Instructor

> Many-to-One | Instructor @

4 Many-to-Many | Instructor

Student

Student

Student

Student

Mapping Cardinalities

» Express the number of entities to which another entity
can be associated via a relationship set

» Most useful in describing binary relationship sets

» N-ary relationships ?
° More complicated
> Details in the book

project

instructor student

ID
name
salary

ID
name
tot_cred

proj_guide

Figure 7.13 E-R diagram with a ternary relationship.

Next: Types of Attributes

» Simple vs Composite
> Single value per attribute ?

» Single-valued vs Multi-valued
> E.g. Phone numbers are multi-valued

» Derived
> |f date-of-birth is present, age can be derived
> Can help in avoiding redundancy, enforcing constraints etc...

Types of Attributes

instructor

Primary key underlined) D
name

first_name
middle _initial

last_name
/ address
street
Composite Ee— street_number

street_name
apt_number
city
state
zip
Multi-valued Wl { phone_number |
date_of _birth

. Derived “ age ()

Relationship Set Keys

» What attributes are needed to represent a relationship

completely and uniquely ?
> Union of primary keys of the entities involved, and relationship

attributes
instructor student
ID ID
narmie narmie
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

° {instructor.ID, date, student.ID} describes a relationship
completely

Relationship Set Keys

» Is {student_id, date, instructor _id} a candidate key ?
> No. Attribute date can be removed from this set without losing key-ness

° In fact, union of primary keys of associated entities is always a superkey

nstructor student

ID ID

name narmie
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

Relationship Set Keys

» Is {student_id, instructor_id} a candidate key ?

> Depends
date
I
instructor : student
ID ID
nare name
salary tot_cred

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

Relationship Set Keys

» Is {student_id, instructor_id} a candidate key ?

> Depends
instructor student
ID ID
name narme
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

If one-to-one relationship, either {instructor _id} or {student id} sufficient
Since a given instructor can only have one advisee, an instructor entity can
only participate in one relationship

e Ditto student

Relationship Set Keys

» Is {student_id, instructor_id} a candidate key ?

> Depends
instructor student
ID ID
name narme
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

e If one-to-many relationship (as shown), {student id} is a candidate key

e Agiven instructor can have many advisees, but at most one advisor per
student allowed

Relationship Set Keys

» General rule for binary relationships
> one-to-one: primary key of either entity set
> one-to-many: primary key of the entity set on the many side

° many-to-many: union of primary keys of the associate entity
sets

» n-ary relationships
> More complicated rules

» What have we been doing
» Why ?

» Understanding this is important
o Rest are details !!
> That’s what books/manuals are for.

Recursive Relationships

» Sometimes a relationship associates an entity set to
itself

» Need “roles” to distinguish

course :
course_id

course id
e | preunsa <

