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Today’s Plan

» SQL (Chapter 3, 4) — Remaining Stuff
o Triggers (5.3)
o Authorization (4.6), Ranking (5.5)
> Some Complex SQL Examples

» Project 1 discussion on Wednesday

» Entity-Relationship Modeling

» Wednesday: Anatomy of a Web Application
° Project 2




Triggers

» A trigger is a statement that is executed automatically

by the system as a side effect of a modification to the
database.

» Suppose that instead of allowing negative account
balances, the bank deals with overdrafts by
o 1. setting the account balance to zero
o 2. creating a loan in the amount of the overdraft

o 3. giving this loan a loan number identical to the account
number of the overdrawn account




Trigger Example in SQL:1999

create trigger overdraft-trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < 0
begin atomic
actions to be taken

end




Trigger Example in SQL:1999

create trigger overdraft-trigger after update on account
referencing new row as nrow
for each row
when nrow.balance < 0
begin atomic
insert into borrower
(select customer-name, account-number

from depositor
where nrow.account-number = depositor.account-number);

insert into /oan values
(nrow.account-number, nrow.branch-name, nrow.balance);

update account set balance =0
where account.account-number = nrow.account-number

end




Triggers...

» External World Actions
> How does the DB order something if the inventory is low ?

» Syntax
> Every system has its own syntax

» Careful with triggers
o Cascading triggers, Infinite Sequences...

» More Info/Examples:

o http://www.adp-gmbh.ch/ora/sql/create_trigger.html
o Google: “create trigger” oracle download-uk



http://www.adp-gmbh.ch/ora/sql/create_trigger.html

Recursion in SQL

» Example: find which courses are a prerequisite, whether directly or
indirectly, for a specific course

with recursi urse_id, prereq_id) as (
select courseid, prereq_id

from prereq

union
select rec_prereq.course _id, prereq.prereq_id,
frotn rec_rereq, p)ereq
where rec—prereq.prereq_id = prereq.course_id
select *

from rec_prereq;

Makes SQL Turing Complete (i.e., you can write any program in SQL)




Ranking

» Ranking is done in conjunction with an order by specification.

» Consider: student _grades(ID, GPA)

» Find the rank of each student.

select /D, rank() over (order by GPA desc) as s_rank
from student _grades
order by s _rank

» Equivalent to:

select ID, (1 + (select count(*)

from student _grades B

where B.GPA > A.GPA)) as s_rank
from student _grades A
order by s_rank;




Authorization/Security

» GRANT and REVOKE keywords

o grant select on instructor to U,, U,, U;
> revoke select on branch from U, U,, U;

» Can provide select, insert, update, delete priviledges

» Can also create “Roles” and do security at the level of roles

Ill

» Some databases support doing this at the level of individual “tuples”

o MS SQL Server: https://docs.microsoft.com/en-us/sgl/relational-databases/security/row-level-

security?view=sgl-server-verl5
o PostgreSQL: https://www.postgresql.org/docs/10/ddl-rowsecurity.html



https://docs.microsoft.com/en-us/sql/relational-databases/security/row-level-security%3Fview=sql-server-ver15

Fun with SQL

4

> Long slide-deck linked off of this page

o Complex SQL queries showing how to do things like: do
Mandelbrot, solve subset sum problem etc.

» The MADIib Analytics Library or MAD Skills, the SQL;

» https://www.red-gate.com/simple-talk/blogs/statistics-
sql-simple-linear-regressions/



https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-think-were-possible/
https://arxiv.org/abs/1208.4165

1. Everything is a Table

1| SELECT * 1| SELECT *

2| FROM ( 2| FROM (

3 SELECT * 3 VALUES(1),(2),(3)
4 FROM person 40 ) tla)

51Dt

Everything is a table. In PostgreSQL, even functions are tables:

11 SELECT *
2 | FROM substring('abcde', 2, 3)

https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-
think-were-possible/



https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-think-were-possible/

2. Recursion can be very powerful

1| WITH RECURSIVE t(v) AS (

SELECT 1 -- Seed Row

UNION ALL

SELECT v + 1 -- Recursion Makes SQL

FROM t Turing-Complete

)

SELECT v
FROM t
LIMIT 5

It yields

https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-
think-were-possible/



https://blog.jooq.org/2016/04/25/10-sql-tricks-that-you-didnt-think-were-possible/

3. Window Functions

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
----------- L S S S S
develop | 11 | 5200 | 5020.0000000000000000
develop | 7 | 4200 | 5020.0000000000000000
develop | 9 | 4500 | 5020.0000000000000000
develop | 8 | 6000 | 5020.0000000000000000
develop | 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 | 3900 | 3700.0000000000000000
sales | 3 | 4800 | 4866.6666666666666667
sales | 1 | 5000 | 4866.6666666666666667
sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

https://www.postgresql.org/docs/9.3/tutorial-window.html




https://www.red-gate.com/simple-talk/blogs/statistics-sql-simple-linear-regressions/

4. Correlation Coefficient

SET ARITHABORT ONj;

DECLARE @QurData TABLE
(
x NUMERIC (18, 6) NOT NULL,
y NUMERIC (18,6) NOT NULL
)7
INSERT INTO @OurData
(x, vy)
SELECT
X,y
FROM (VALUES
(1,32),(1,23), (3,50), (11,37), (-2,39), (10,44), (27,32), (25,16), (20,23),
(4,5),(30,41), (28,2), (31,52), (29,12), (50,40), (43,18), (10, 65), (44, 26),
(35,15), (24,37), (52,66), (59,46), (64,95), (79,36), (24,66), (69,58), (88,56),
(61,21), (100,60), (62,54), (10,14), (22,40), (52,97), (81,26), (37,58), (93,71)
(64,82), (24,33),(112,49), (64,90), (53,90), (132,61), (104,35), (60,52),
(29,50), (85,116), (95,104), (131,37), (139,38), (8,124)
) £(x,y)
SELECT
((Sy * Sxx) - (Sx * Sxy))
/ ((N * (Sxx)) - (Sx * Sx)) AS a,
((N * Sxy) - (Sx * Sy))
/ ((N * Sxx) - (Sx * Sx)) AS b,
((N * Sxy) - (Sx * Sy))
/ SQRT (
(((N * Sxx) - (Sx * Sx))
* ((N * Syy — (Sy * Sy))))) AS ¢
FROM
(
SELECT SUM([@OurData].x) AS Sx, SUM([@OurData].y) AS Sy,
SUM([ROurData] .x * [R@OurData].x) AS Sxx,
SUM([@OurData] .x * [@QOurData].y) AS Sxy,
SUM([@OurDatal] .y * [@QOurDatal].y) AS Syy,
COUNT (*) AS N
FROM @OurData
) sums;




5. Page Rank

Recursive algorithm to assign weights to
the nodes of a graph (Web Link Graph)

Weight for a node depends on the
weights of the nodes that point to it

Typically done in iterations till
“convergence”

Not obvious that you can do it in SQL,
but:

o Each iteration is just a LEFT OUTERJOIN
o Stopping condition is trickier

Other ways to do it as well

https://devhambi.com/2013/pagerank.html



declare @DampingFactor decimal(3,2) = 0.85 --set the damping factor
,@arginOfError decimal(10,5) = 0.001 --set the stable weight
,@TotalNodeCount int
,@IterationCount int = 1

-- we need to know the total number of nodes in the system
set @TotalNodeCount = (select count(*) from Nodes)

-- iterate!
WHILE EXISTS
(
-- stop as soon as all nodes have converged
SELECT *
FROM dbo.Nodes
WHERE HasConverged = @
D)
BEGIN

UPDATE n SET
NodeWeight = 1.0 - @DampingFactor + isnull(x.TransferWeight, 0.0)

-- a node has converged when its existing weight is the same as the weight it would be given
-- (plus or minus the stable weight margin of error)
,HasConverged = case when abs(n.NodeWeight - (1.0 - @DampingFactor + isnull(x.TransferWeight, 0.0))) < @MarginOfError then 1
else @ end
FROM Nodes n
LEFT OUTER JOIN
(
-- Here's the weight calculation in place
SELECT
e.TargetNodeld
,TransferWeight = sum(n.NodeWeight / n.NodeCount) * @DampingFactor
FROM Nodes n
INNER JOIN Edges e
ON n.NodeId = e.SourceNodeld
GROUP BY e.TargetNodeId
) as x
ON x.TargetNodeId = n.NodeId

-- for demonstration purposes, return the value of the nodes after each iteration
SELECT
@IterationCount as IterationCount
*

FROM Nodes

set @IterationCount += 1
END



Today’s Plan

» SQL (Chapter 3, 4) — Remaining Stuff

» Entity-Relationship Modeling

o Entity-relationship Model (E/R model)
> Converting from E/R to Relational

» Wednesday: Anatomy of a Web Application
° Project 2




Entity-Relationship Model

» Two key concepts
o Entities:

* An object that exists and is distinguishable from other objects
- Examples: Bob Smith, BofA, CMSC424

* Have attributes (people have names and addresses)

* Form entity sets with other entities of the same type that share the
same properties

- Set of all people, set of all classes

* Entity sets may overlap

* Customers and Employees




Entity-Relationship Model

» Two key concepts

o Relationships:

* Relate 2 or more entities
- E.g. Bob Smith has account at College Park Branch

* Form relationship sets with other relationships of the same type
that share the same properties

« Customers have accounts at Branches

* Can have attributes:

* has account at may have an attribute start-date

* Can involve more than 2 entities

- Employee works at Branch at Job




Entities and relationships

Two Entity Sets
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ER Diagram

date

instructor /\ student
ID advisor ID
name \/ namnie

salary tot_cred

Alternative representation,

used in the book in the past
(cust-name) ( number )

Both notations used |Customer account |

commonly -
( cust-city ) balance )




Rest of the class

» Details of the ER Model

> How to represent various types of constraints/semantic
information etc.

» Design issues

» A detailed example




Next: Relationship Cardinalities

» We may know:

* One customer can only open one account
OR
* One customer can open multiple accounts

» Representing this is important
» Why ?

o Better manipulation of data

* |f former, can store the account info in the customer table
> Can enforce such a constraint
* Application logic will have to do it; NOT GOOD

°© Remember: If not represented in conceptual model, the domain
knowledge may be lost




Mapping Cardinalities

» Express the number of entities to which another entity
can be associated via a relationship set

» Most useful in describing binary relationship sets




Mapping Cardinalities

» One-to-One | Instructor @

4 One-to-Many | Instructor

> Many-to-One | Instructor @

4 Many-to-Many | Instructor

Student

Student

Student

Student



Mapping Cardinalities

» Express the number of entities to which another entity
can be associated via a relationship set

» Most useful in describing binary relationship sets

» N-ary relationships ?
° More complicated
> Details in the book

project

instructor student

ID
name
salary

ID
name
tot_cred

proj_guide

Figure 7.13 E-R diagram with a ternary relationship.




Next: Types of Attributes

» Simple vs Composite
> Single value per attribute ?

» Single-valued vs Multi-valued
> E.g. Phone numbers are multi-valued

» Derived
> |f date-of-birth is present, age can be derived
> Can help in avoiding redundancy, enforcing constraints etc...




Types of Attributes

instructor

Primary key underlined ) D
name

first_name
middle _initial

last_name
/ address
street
Composite Ee— street_number

street_name
apt_number
city
state
zip
Multi-valued Wl { phone_number |
date_of _birth

. Derived “ age ()



Relationship Set Keys

» What attributes are needed to represent a relationship

completely and uniquely ?
> Union of primary keys of the entities involved, and relationship

attributes
instructor student
ID ID
narmie narmie
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

° {instructor.ID, date, student.ID} describes a relationship
completely




Relationship Set Keys

» Is {student_id, date, instructor _id} a candidate key ?
> No. Attribute date can be removed from this set without losing key-ness

° In fact, union of primary keys of associated entities is always a superkey

nstructor student

ID ID

name narmie
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.




Relationship Set Keys

» Is {student_id, instructor_id} a candidate key ?

> Depends
date
I
instructor : student
ID ID
nare name
salary tot_cred

Figure 7.8 E-R diagram with an attribute attached to a relationship set.




Relationship Set Keys

» Is {student_id, instructor_id} a candidate key ?

> Depends
instructor student
ID ID
name narme
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

If one-to-one relationship, either {instructor _id} or {student id} sufficient
Since a given instructor can only have one advisee, an instructor entity can
only participate in one relationship

e Ditto student




Relationship Set Keys

» Is {student_id, instructor_id} a candidate key ?

> Depends
instructor student
ID ID
name narme
tot_cred

salary

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

e If one-to-many relationship (as shown), {student id} is a candidate key

e Agiven instructor can have many advisees, but at most one advisor per
student allowed




Relationship Set Keys

» General rule for binary relationships
> one-to-one: primary key of either entity set
> one-to-many: primary key of the entity set on the many side

° many-to-many: union of primary keys of the associate entity
sets

» n-ary relationships
> More complicated rules




» What have we been doing
» Why ?

» Understanding this is important
o Rest are details !!
> That’s what books/manuals are for.




Recursive Relationships

» Sometimes a relationship associates an entity set to
itself

» Need “roles” to distinguish

course :
course_id

course id
e | preunsa <




