
Instructor: Amol Deshpande
amol@cs.umd.edu

} Entity-Relationship Model Review

} Converting from E/R Model to Relational Schema

} Normalization

282 Chapter 7 Database Design and the E-R Model

7.5.7 E-R diagram for the University Enterprise

In Figure 7.15, we show an E-R diagram that corresponds to the university enter-
prise that we have been using thus far in the text. This E-R diagram is equivalent
to the textual description of the university E-R model that we saw in Section 7.4,
but with several additional constraints, and section now being a weak entity.

In our university database, we have a constraint that each instructor must have
exactly one associated department. As a result, there is a double line in Figure 7.15
between instructor and inst dept, indicating total participation of instructor in inst
dept; that is, each instructor must be associated with a department. Further, there

is an arrow from inst dept to department, indicating that each instructor can have
at most one associated department.

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day

start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

Figure 7.15 E-R diagram for a university enterprise.

} Nothing about actual data
◦ How is it stored ?

} No talk about the query languages
◦ How do we access the data ?

} Semantic vs Syntactic Data Models
◦ Remember: E/R Model is used for conceptual modeling
◦ Many conceptual models have the same properties

} They are much more about representing the knowledge
than about database storage/querying

} Entity sets vs attributes
◦ Depends on the semantics of the application
◦ Consider telephone

} Entity sets vs Relationsihp sets
◦ Consider takes

} N-ary vs binary relationships
◦ Possible to avoid n-ary relationships, but there are some cases

where it is advantageous to use them

} It is not an exact science !!

} Entity sets vs attributes
◦ Depends on the semantics of the application
◦ Consider telephone

290 Chapter 7 Database Design and the E-R Model

added to the instructor relation when the schema for inst dept is merged into
instructor.

7.7 Entity-Relationship Design Issues

The notions of an entity set and a relationship set are not precise, and it is possible
to define a set of entities and the relationships among them in a number of
different ways. In this section, we examine basic issues in the design of an E-R
database schema. Section 7.10 covers the design process in further detail.

7.7.1 Use of Entity Sets versus Attributes

Consider the entity set instructor with the additional attribute phone number (Fig-
ure 7.17a.) It can easily be argued that a phone is an entity in its own right with
attributes phone number and location; the location may be the office or home where
the phone is located, with mobile (cell) phones perhaps represented by the value
“mobile.” If we take this point of view, we do not add the attribute phone number
to the instructor. Rather, we create:

• A phone entity set with attributes phone number and location.

• A relationship set inst phone, denoting the association between instructors
and the phones that they have.

This alternative is shown in Figure 7.17b.
What, then, is the main difference between these two definitions of an instruc-

tor? Treating a phone as an attribute phone number implies that instructors have
precisely one phone number each. Treating a phone as an entity phone permits
instructors to have several phone numbers (including zero) associated with them.
However, we could instead easily define phone number as a multivalued attribute
to allow multiple phones per instructor.

The main difference then is that treating a phone as an entity better models
a situation where one may want to keep extra information about a phone, such
as its location, or its type (mobile, IP phone, or plain old phone), or all who share

instructor

ID
name
salary

phone
phone_number
location

instructor

ID
name
salary
phone_number

(a) (b)

inst_phone

Figure 7.17 Alternatives for adding phone to the instructor entity set.

} Entity sets vs Relationsihp sets
◦ Consider takes

292 Chapter 7 Database Design and the E-R Model

registration
...
...
...

section
sec_id
semester
year

student
ID
name
tot_cred

section_reg student_reg

Figure 7.18 Replacement of takes by registration and two relationship sets

Both the approach of Figure 7.15 and that of Figure 7.18 accurately represent
the university’s information, but the use of takes is more compact and probably
preferable. However, if the registrar’s office associates other information with a
course-registration record, it might be best to make it an entity in its own right.

One possible guideline in determining whether to use an entity set or a
relationship set is to designate a relationship set to describe an action that occurs
between entities. This approach can also be useful in deciding whether certain
attributes may be more appropriately expressed as relationships.

7.7.3 Binary versus n-ary Relationship Sets

Relationships in databases are often binary. Some relationships that appear to be
nonbinary could actually be better represented by several binary relationships.
For instance, one could create a ternary relationship parent, relating a child to
his/her mother and father. However, such a relationship could also be represented
by two binary relationships, mother and father, relating a child to his/her mother
and father separately. Using the two relationships mother and father provides us a
record of a child’s mother, even if we are not aware of the father’s identity; a null
value would be required if the ternary relationship parent is used. Using binary
relationship sets is preferable in this case.

In fact, it is always possible to replace a nonbinary (n-ary, for n > 2) relation-
ship set by a number of distinct binary relationship sets. For simplicity, consider
the abstract ternary (n = 3) relationship set R, relating entity sets A, B, and C . We
replace the relationship set R by an entity set E , and create three relationship sets
as shown in Figure 7.19:

• RA, relating E and A.

• RB , relating E and B.

• RC , relating E and C .

} Basic design principles
◦ Faithful
� Must make sense
◦ Satisfies the application requirements
◦ Models the requisite domain knowledge
� If not modeled, lost afterwards
◦ Avoid redundancy
� Potential for inconsistencies
◦ Go for simplicity

} Typically an iterative process that goes back and forth

} Entity-Relationship Model Review

} Converting from E/R Model to Relational Schema

} Normalization

} Convert entity sets into a relational schema with the
same set of attributes

Student (ID, name, tot_cred)

Instructor(ID, name, salary)

282 Chapter 7 Database Design and the E-R Model

7.5.7 E-R diagram for the University Enterprise

In Figure 7.15, we show an E-R diagram that corresponds to the university enter-
prise that we have been using thus far in the text. This E-R diagram is equivalent
to the textual description of the university E-R model that we saw in Section 7.4,
but with several additional constraints, and section now being a weak entity.

In our university database, we have a constraint that each instructor must have
exactly one associated department. As a result, there is a double line in Figure 7.15
between instructor and inst dept, indicating total participation of instructor in inst
dept; that is, each instructor must be associated with a department. Further, there

is an arrow from inst dept to department, indicating that each instructor can have
at most one associated department.

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day

start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

Figure 7.15 E-R diagram for a university enterprise.

282 Chapter 7 Database Design and the E-R Model

7.5.7 E-R diagram for the University Enterprise

In Figure 7.15, we show an E-R diagram that corresponds to the university enter-
prise that we have been using thus far in the text. This E-R diagram is equivalent
to the textual description of the university E-R model that we saw in Section 7.4,
but with several additional constraints, and section now being a weak entity.

In our university database, we have a constraint that each instructor must have
exactly one associated department. As a result, there is a double line in Figure 7.15
between instructor and inst dept, indicating total participation of instructor in inst
dept; that is, each instructor must be associated with a department. Further, there

is an arrow from inst dept to department, indicating that each instructor can have
at most one associated department.

time_slotcourse

student
ID
name
salary

ID
name
tot_cred

course_id
title
credits

time_slot_id
{ day

start_time
end_time

}
course_id prereq_id

advisor

teaches takes

sec_course sec_time_slot

grade

prereq

inst_dept stud_dept

instructor

department
dept_name
building
budget

section
sec_id
semester
year

course_dept

sec_class

classroom
building
room_number
capacity

Figure 7.15 E-R diagram for a university enterprise.

} Convert relationship sets also into a relational schema
} Remember: A relationship is completely described by primary

keys of associate entities and its own attributes

We can do better for many-to-
one or one-to-one

276 Chapter 7 Database Design and the E-R Model

instructor student
ID
name
salary

instructor
ID
name
salary

instructor
ID
name
salary

ID
name
tot_cred

student
ID
name
tot_cred

student
ID
name
tot_cred

(a)

(b)

(c)

advisor

advisor

advisor

Figure 7.9 Relationships. (a) One-to-one. (b) One-to-many. (c) Many-to-many.

7.5.2 Mapping Cardinality

The relationship set advisor, between the instructor and student entity sets may be
one-to-one, one-to-many, many-to-one, or many-to-many. To distinguish among
these types, we draw either a directed line (→) or an undirected line (—) between
the relationship set and the entity set in question, as follows:

• One-to-one: We draw a directed line from the relationship set advisor to
both entity sets instructor and student (see Figure 7.9a). This indicates that an
instructor may advise at most one student, and a student may have at most
one advisor.

• One-to-many: We draw a directed line from the relationship set advisor to
the entity set instructor and an undirected line to the entity set student (see
Figure 7.9b). This indicates that an instructor may advise many students, but
a student may have at most one advisor.

• Many-to-one: We draw an undirected line from the relationship set advisor
to the entity set instructor and a directed line to the entity set student. This
indicates that an instructor may advise at most one student, but a student
may have many advisors.

• Many-to-many: We draw an undirected line from the relationship set advisor
to both entity sets instructor and student (see Figure 7.9c). This indicates that

Advisor (student_ID, instructor_ID, date)

7.5 Entity-Relationship Diagrams 275

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

Figure 7.7 E-R diagram corresponding to instructors and students.

• Rectangles divided into two parts represent entity sets. The first part, which
in this textbook is shaded blue, contains the name of the entity set. The second
part contains the names of all the attributes of the entity set.

• Diamonds represent relationship sets.

• Undivided rectangles represent the attributes of a relationship set. Attributes
that are part of the primary key are underlined.

• Lines link entity sets to relationship sets.

• Dashed lines link attributes of a relationship set to the relationship set.

• Double lines indicate total participation of an entity in a relationship set.

• Double diamonds represent identifying relationship sets linked to weak
entity sets (we discuss identifying relationship sets and weak entity sets later,
in Section 7.5.6).

Consider the E-R diagram in Figure 7.7, which consists of two entity sets, in-
structor and student related through a binary relationship set advisor. The attributes
associated with instructor are ID, name, and salary. The attributes associated with
student are ID, name, and tot cred. In Figure 7.7, attributes of an entity set that are
members of the primary key are underlined.

If a relationship set has some attributes associated with it, then we enclose the
attributes in a rectangle and link the rectangle with a dashed line to the diamond
representing that relationship set. For example, in Figure 7.8, we have the date
descriptive attribute attached to the relationship set advisor to specify the date on
which an instructor became the advisor.

ID
name
salary

ID
name
tot_cred

date

instructor student
advisor

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

276 Chapter 7 Database Design and the E-R Model

instructor student
ID
name
salary

instructor
ID
name
salary

instructor
ID
name
salary

ID
name
tot_cred

student
ID
name
tot_cred

student
ID
name
tot_cred

(a)

(b)

(c)

advisor

advisor

advisor

Figure 7.9 Relationships. (a) One-to-one. (b) One-to-many. (c) Many-to-many.

7.5.2 Mapping Cardinality

The relationship set advisor, between the instructor and student entity sets may be
one-to-one, one-to-many, many-to-one, or many-to-many. To distinguish among
these types, we draw either a directed line (→) or an undirected line (—) between
the relationship set and the entity set in question, as follows:

• One-to-one: We draw a directed line from the relationship set advisor to
both entity sets instructor and student (see Figure 7.9a). This indicates that an
instructor may advise at most one student, and a student may have at most
one advisor.

• One-to-many: We draw a directed line from the relationship set advisor to
the entity set instructor and an undirected line to the entity set student (see
Figure 7.9b). This indicates that an instructor may advise many students, but
a student may have at most one advisor.

• Many-to-one: We draw an undirected line from the relationship set advisor
to the entity set instructor and a directed line to the entity set student. This
indicates that an instructor may advise at most one student, but a student
may have many advisors.

• Many-to-many: We draw an undirected line from the relationship set advisor
to both entity sets instructor and student (see Figure 7.9c). This indicates that

7.5 Entity-Relationship Diagrams 275

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

Figure 7.7 E-R diagram corresponding to instructors and students.

• Rectangles divided into two parts represent entity sets. The first part, which
in this textbook is shaded blue, contains the name of the entity set. The second
part contains the names of all the attributes of the entity set.

• Diamonds represent relationship sets.

• Undivided rectangles represent the attributes of a relationship set. Attributes
that are part of the primary key are underlined.

• Lines link entity sets to relationship sets.

• Dashed lines link attributes of a relationship set to the relationship set.

• Double lines indicate total participation of an entity in a relationship set.

• Double diamonds represent identifying relationship sets linked to weak
entity sets (we discuss identifying relationship sets and weak entity sets later,
in Section 7.5.6).

Consider the E-R diagram in Figure 7.7, which consists of two entity sets, in-
structor and student related through a binary relationship set advisor. The attributes
associated with instructor are ID, name, and salary. The attributes associated with
student are ID, name, and tot cred. In Figure 7.7, attributes of an entity set that are
members of the primary key are underlined.

If a relationship set has some attributes associated with it, then we enclose the
attributes in a rectangle and link the rectangle with a dashed line to the diamond
representing that relationship set. For example, in Figure 7.8, we have the date
descriptive attribute attached to the relationship set advisor to specify the date on
which an instructor became the advisor.

ID
name
salary

ID
name
tot_cred

date

instructor student
advisor

Figure 7.8 E-R diagram with an attribute attached to a relationship set.
Fold into Student:
Student(ID, name, tot_credits, advisor_ID)

Foreign key into Instructor relation

7.5 Entity-Relationship Diagrams 275

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

Figure 7.7 E-R diagram corresponding to instructors and students.

• Rectangles divided into two parts represent entity sets. The first part, which
in this textbook is shaded blue, contains the name of the entity set. The second
part contains the names of all the attributes of the entity set.

• Diamonds represent relationship sets.

• Undivided rectangles represent the attributes of a relationship set. Attributes
that are part of the primary key are underlined.

• Lines link entity sets to relationship sets.

• Dashed lines link attributes of a relationship set to the relationship set.

• Double lines indicate total participation of an entity in a relationship set.

• Double diamonds represent identifying relationship sets linked to weak
entity sets (we discuss identifying relationship sets and weak entity sets later,
in Section 7.5.6).

Consider the E-R diagram in Figure 7.7, which consists of two entity sets, in-
structor and student related through a binary relationship set advisor. The attributes
associated with instructor are ID, name, and salary. The attributes associated with
student are ID, name, and tot cred. In Figure 7.7, attributes of an entity set that are
members of the primary key are underlined.

If a relationship set has some attributes associated with it, then we enclose the
attributes in a rectangle and link the rectangle with a dashed line to the diamond
representing that relationship set. For example, in Figure 7.8, we have the date
descriptive attribute attached to the relationship set advisor to specify the date on
which an instructor became the advisor.

ID
name
salary

ID
name
tot_cred

date

instructor student
advisor

Figure 7.8 E-R diagram with an attribute attached to a relationship set.

276 Chapter 7 Database Design and the E-R Model

instructor student
ID
name
salary

instructor
ID
name
salary

instructor
ID
name
salary

ID
name
tot_cred

student
ID
name
tot_cred

student
ID
name
tot_cred

(a)

(b)

(c)

advisor

advisor

advisor

Figure 7.9 Relationships. (a) One-to-one. (b) One-to-many. (c) Many-to-many.

7.5.2 Mapping Cardinality

The relationship set advisor, between the instructor and student entity sets may be
one-to-one, one-to-many, many-to-one, or many-to-many. To distinguish among
these types, we draw either a directed line (→) or an undirected line (—) between
the relationship set and the entity set in question, as follows:

• One-to-one: We draw a directed line from the relationship set advisor to
both entity sets instructor and student (see Figure 7.9a). This indicates that an
instructor may advise at most one student, and a student may have at most
one advisor.

• One-to-many: We draw a directed line from the relationship set advisor to
the entity set instructor and an undirected line to the entity set student (see
Figure 7.9b). This indicates that an instructor may advise many students, but
a student may have at most one advisor.

• Many-to-one: We draw an undirected line from the relationship set advisor
to the entity set instructor and a directed line to the entity set student. This
indicates that an instructor may advise at most one student, but a student
may have many advisors.

• Many-to-many: We draw an undirected line from the relationship set advisor
to both entity sets instructor and student (see Figure 7.9c). This indicates that

Fold into Instructor:
Instructor(ID, name, salary, advisee_ID)

7.5 Entity-Relationship Diagrams 275

instructor
ID
name
salary

student

ID
name
tot_cred

advisor

Figure 7.7 E-R diagram corresponding to instructors and students.

• Rectangles divided into two parts represent entity sets. The first part, which
in this textbook is shaded blue, contains the name of the entity set. The second
part contains the names of all the attributes of the entity set.

• Diamonds represent relationship sets.

• Undivided rectangles represent the attributes of a relationship set. Attributes
that are part of the primary key are underlined.

• Lines link entity sets to relationship sets.

• Dashed lines link attributes of a relationship set to the relationship set.

• Double lines indicate total participation of an entity in a relationship set.

• Double diamonds represent identifying relationship sets linked to weak
entity sets (we discuss identifying relationship sets and weak entity sets later,
in Section 7.5.6).

Consider the E-R diagram in Figure 7.7, which consists of two entity sets, in-
structor and student related through a binary relationship set advisor. The attributes
associated with instructor are ID, name, and salary. The attributes associated with
student are ID, name, and tot cred. In Figure 7.7, attributes of an entity set that are
members of the primary key are underlined.

If a relationship set has some attributes associated with it, then we enclose the
attributes in a rectangle and link the rectangle with a dashed line to the diamond
representing that relationship set. For example, in Figure 7.8, we have the date
descriptive attribute attached to the relationship set advisor to specify the date on
which an instructor became the advisor.

ID
name
salary

ID
name
tot_cred

date

instructor student
advisor

Figure 7.8 E-R diagram with an attribute attached to a relationship set.
Fold into Student:
Student(ID, name, tot_credits, advisor_ID)

OR
Fold into Instructor:
Instructor(ID, name, salary, advisee_ID)

276 Chapter 7 Database Design and the E-R Model

instructor student
ID
name
salary

instructor
ID
name
salary

instructor
ID
name
salary

ID
name
tot_cred

student
ID
name
tot_cred

student
ID
name
tot_cred

(a)

(b)

(c)

advisor

advisor

advisor

Figure 7.9 Relationships. (a) One-to-one. (b) One-to-many. (c) Many-to-many.

7.5.2 Mapping Cardinality

The relationship set advisor, between the instructor and student entity sets may be
one-to-one, one-to-many, many-to-one, or many-to-many. To distinguish among
these types, we draw either a directed line (→) or an undirected line (—) between
the relationship set and the entity set in question, as follows:

• One-to-one: We draw a directed line from the relationship set advisor to
both entity sets instructor and student (see Figure 7.9a). This indicates that an
instructor may advise at most one student, and a student may have at most
one advisor.

• One-to-many: We draw a directed line from the relationship set advisor to
the entity set instructor and an undirected line to the entity set student (see
Figure 7.9b). This indicates that an instructor may advise many students, but
a student may have at most one advisor.

• Many-to-one: We draw an undirected line from the relationship set advisor
to the entity set instructor and a directed line to the entity set student. This
indicates that an instructor may advise at most one student, but a student
may have many advisors.

• Many-to-many: We draw an undirected line from the relationship set advisor
to both entity sets instructor and student (see Figure 7.9c). This indicates that

7.5 Entity-Relationship Diagrams 281

course
course_id
title
credits

section
sec_id
semester
year

sec_course

Figure 7.14 E-R diagram with a weak entity set.

had a primary key. However, conceptually, a section is still dependent on a course
for its existence, which is made explicit by making it a weak entity set.

In E-R diagrams, a weak entity set is depicted via a rectangle, like a strong
entity set, but there are two main differences:

• The discriminator of a weak entity is underlined with a dashed, rather than
a solid, line.

• The relationship set connecting the weak entity set to the identifying strong
entity set is depicted by a double diamond.

In Figure 7.14, the weak entity set section depends on the strong entity set course
via the relationship set sec course.

The figure also illustrates the use of double lines to indicate total participation;
the participation of the (weak) entity set section in the relationship sec course is
total, meaning that every section must be related via sec course to some course.
Finally, the arrow from sec course to course indicates that each section is related to
a single course.

A weak entity set can participate in relationships other than the identifying
relationship. For instance, the section entity could participate in a relationship
with the time slot entity set, identifying the time when a particular class section
meets. A weak entity set may participate as owner in an identifying relationship
with another weak entity set. It is also possible to have a weak entity set with more
than one identifying entity set. A particular weak entity would then be identified
by a combination of entities, one from each identifying entity set. The primary
key of the weak entity set would consist of the union of the primary keys of the
identifying entity sets, plus the discriminator of the weak entity set.

In some cases, the database designer may choose to express a weak entity set
as a multivalued composite attribute of the owner entity set. In our example, this
alternative would require that the entity set course have a multivalued, composite
attribute section. A weak entity set may be more appropriately modeled as an
attribute if it participates in only the identifying relationship, and if it has few
attributes. Conversely, a weak entity set representation more aptly models a
situation where the set participates in relationships other than the identifying
relationship, and where the weak entity set has several attributes. It is clear that
section violates the requirements for being modeled as a multivalued composite
attribute, and is modeled more aptly as a weak entity set.

Need to copy the primary key from the strong entity set:

Section(course_id, sec_id, semester, year)

Primary key for section = Primary key for course +
Discriminator Attributes

BUT

Phone_number needs to be split out into a separate table

Instructor_Phone(Instructor_ID, phone_number)

284 Chapter 7 Database Design and the E-R Model

classroom (building, room number, capacity)
department (dept name, building, budget)
course (course id, title, credits)
instructor (ID, name, salary)
student (ID, name, tot cred)

As you can see, both the instructor and student schemas are different from the
schemas we have used in the previous chapters (they do not contain the attribute
dept name). We shall revisit this issue shortly.

7.6.2 Representation of Strong Entity Sets with Complex Attributes

When a strong entity set has nonsimple attributes, things are a bit more complex.
We handle composite attributes by creating a separate attribute for each of the
component attributes; we do not create a separate attribute for the composite
attribute itself. To illustrate, consider the version of the instructor entity set de-
picted in Figure 7.11. For the composite attribute name, the schema generated
for instructor contains the attributes first name, middle name, and last name; there
is no separate attribute or schema for name. Similarly, for the composite attribute
address, the schema generated contains the attributes street, city , state, and zip code.
Since street is a composite attribute it is replaced by street number, street name, and
apt number. We revisit this matter in Section 8.2.

Multivalued attributes are treated differently from other attributes. We have
seen that attributes in an E-R diagram generally map directly into attributes for the
appropriate relation schemas. Multivalued attributes, however, are an exception;
new relation schemas are created for these attributes, as we shall see shortly.

Derived attributes are not explicitly represented in the relational data model.
However, they can be represented as “methods” in other data models such as the
object-relational data model, which is described later in Chapter 22.

The relational schema derived from the version of entity set instructor with
complex attributes, without including the multivalued attribute, is thus:

instructor (ID, first name, middle name, last name,
street number, street name, apt number,
city , state, zip code, date of birth)

For a multivalued attribute M, we create a relation schema R with an attribute
A that corresponds to M and attributes corresponding to the primary key of the
entity set or relationship set of which M is an attribute.

As an illustration, consider the E-R diagram in Figure 7.11 that depicts the
entity set instructor, which includes the multivalued attribute phone number. The
primary key of instructor is ID. For this multivalued attribute, we create a relation
schema

instructor phone (ID, phone number)

278 Chapter 7 Database Design and the E-R Model

instructor
ID
name

first_name
middle_initial
last_name

address
street

street_number
street_name
apt_number

city
state
zip

{ phone_number }
date_of_birth
age ()

Figure 7.11 E-R diagram with composite, multivalued, and derived attributes.

street, city, state, and zip code. The attribute street is itself a composite attribute
whose component attributes are street number, street name, and apartment number.

Figure 7.11 also illustrates a multivalued attribute phone number, denoted by
“{phone number}”, and a derived attribute age, depicted by a “age ()”.

7.5.4 Roles

We indicate roles in E-R diagrams by labeling the lines that connect diamonds to
rectangles. Figure 7.12 shows the role indicators course id and prereq id between
the course entity set and the prereq relationship set.

7.5.5 Nonbinary Relationship Sets

Nonbinary relationship sets can be specified easily in an E-R diagram. Figure 7.13
consists of the three entity sets instructor, student, and project, related through the
relationship set proj guide.

course
course_id
title
credits

course_id

prereq_id prereq

Figure 7.12 E-R diagram with role indicators.

A few different ways to handle it

1. Common table for common information
and separate tables for additional
information

2. Separate tables altogether – good idea if an
employee can’t be a student also –
querying becomes harder (have to do
unions for queries across all “persons”)

7.8 Extended E-R Features 297

person
ID
name
address

student

instructor
rank

secretary
hours_per_week

employee
salary tot_credits

Figure 7.21 Specialization and generalization.

sets are depicted as regular entity sets—that is, as rectangles containing the name
of the entity set.

7.8.2 Generalization

The refinement from an initial entity set into successive levels of entity subgroup-
ings represents a top-down design process in which distinctions are made explicit.
The design process may also proceed in a bottom-up manner, in which multiple
entity sets are synthesized into a higher-level entity set on the basis of common
features. The database designer may have first identified:

• instructor entity set with attributes instructor id, instructor name, instructor
salary, and rank.

• secretary entity set with attributes secretary id, secretary name, secretary salary,
and hours per week.

There are similarities between the instructor entity set and the secretary entity
set in the sense that they have several attributes that are conceptually the same
across the two entity sets: namely, the identifier, name, and salary attributes.
This commonality can be expressed by generalization, which is a containment
relationship that exists between a higher-level entity set and one or more lower-level
entity sets. In our example, employee is the higher-level entity set and instructor and
secretary are lower-level entity sets. In this case, attributes that are conceptually
the same had different names in the two lower-level entity sets. To create a
generalization, the attributes must be given a common name and represented
with the higher-level entity person. We can use the attribute names ID, name,
address, as we saw in the example in Section 7.8.1.

302 Chapter 7 Database Design and the E-R Model

project

evaluation

instructor student

eval_ for

proj_ guide

Figure 7.22 E-R diagram with redundant relationships.

guide and evaluation to represent which (student, project, instructor) combination
an evaluation is for. Figure 7.23 shows a notation for aggregation commonly used
to represent this situation.

7.8.6 Reduction to Relation Schemas

We are in a position now to describe how the extended E-R features can be
translated into relation schemas.

7.8.6.1 Representation of Generalization

There are two different methods of designing relation schemas for an E-R diagram
that includes generalization. Although we refer to the generalization in Figure 7.21
in this discussion, we simplify it by including only the first tier of lower-level
entity sets—that is, employee and student. We assume that ID is the primary key
of person.

1. Create a schema for the higher-level entity set. For each lower-level entity
set, create a schema that includes an attribute for each of the attributes of that
entity set plus one for each attribute of the primary key of the higher-level
entity set. Thus, for the E-R diagram of Figure 7.21 (ignoring the instructor
and secretary entity sets) we have three schemas:

person (ID, name, street, city)
employee (ID, salary)
student (ID, tot cred)

7.8 Extended E-R Features 303

evaluation

proj_ guide
instructor student

eval_ for

project

Figure 7.23 E-R diagram with aggregation.

The primary-key attributes of the higher-level entity set become primary-
key attributes of the higher-level entity set as well as all lower-level entity
sets. These can be seen underlined in the above example.

In addition, we create foreign-key constraints on the lower-level entity
sets, with their primary-key attributes referencing the primary key of the
relation created from the higher-level entity set. In the above example, the
ID attribute of employee would reference the primary key of person, and
similarly for student.

2. An alternative representation is possible, if the generalization is disjoint and
complete—that is, if no entity is a member of two lower-level entity sets
directly below a higher-level entity set, and if every entity in the higher-level
entity set is also a member of one of the lower-level entity sets. Here, we do
not create a schema for the higher-level entity set. Instead, for each lower-
level entity set, we create a schema that includes an attribute for each of
the attributes of that entity set plus one for eachattribute of the higher-level
entity set. Then, for the E-R diagram of Figure 7.21, we have two schemas:

employee (ID, name, street, city, salary)
student (ID, name, street, city, tot cred)

Both these schemas have ID, which is the primary-key attribute of the higher-
level entity set person, as their primary key.

} Entity-Relationship Model Review

} Converting from E/R Model to Relational Schema

} Normalization

} Where did we come up with the schema that we used ?
◦ E.g. why not store the actor names with movies ?

} If from an E-R diagram, then:
◦ Did we make the right decisions with the E-R diagram ?

} Goals:
◦ Formal definition of what it means to be a “good” schema.
◦ How to achieve it.

Movie(title, year, length, inColor, studioName, producerC#)

StarsIn(movieTitle, movieYear, starName)

MovieStar(name, address, gender, birthdate)

MovieExec(name, address, cert#, netWorth)

Studio(name, address, presC#)

Movie(title, year, length, inColor, studioName, producerC#, starName)
<StarsIn merged into above>
MovieStar(name, address, gender, birthdate)

MovieExec(name, address, cert#, netWorth)
Studio(name, address, presC#)

Changed to:

Is this a good schema ???

Title Year Length inColor StudioName prodC# StarName
Star wars 1977 121 Yes Fox 128 Hamill
Star wars 1977 121 Yes Fox 128 Fisher
Star wars 1977 121 Yes Fox 128 H. Ford
King Kong 2005 187 Yes Universal 150 Watts
King Kong 1933 100 no RKO 20 Fay

Issues:
1. Redundancy è higher storage, inconsistencies (“anomalies”)

update anomalies, insertion anamolies

2. Need nulls
Unable to represent some information without using nulls
How to store movies w/o actors (pre-productions etc) ?

Movie(title, year, length, inColor, studioName, producerC#, starName)

Issues:
3. Avoid sets

- Hard to represent

- Hard to query

Movie(title, year, length, inColor, studioName, producerC#, starNames)

Title Year Length inColor StudioName prodC# StarNames
Star wars 1977 121 Yes Fox 128 {Hamill,

Fisher, H.
ford}

King Kong 2005 187 Yes Universal 150 Watts
King Kong 1933 100 no RKO 20 Fay

Name Address
Fox Address1
Studio2 Address1
Universial Address2

This process is also called “decomposition”

Issues:
4. Requires more joins (w/o any obvious benefits)

5. Hard to check for some dependencies
What if the “address” is actually the presC#’s address ?
No easy way to ensure that constraint (w/o a join).

Split Studio(name, address, presC#) into:
Studio1 (name, presC#) Studio2(name, address)???

Name presC#
Fox 101
Studio2 101
Universial 102

Smaller schemas always good ????

movieTitle starName
Star Wars Hamill
King Kong Watts
King Kong Faye

Issues:
6. “joining” them back results in more tuples than what we started with

(King Kong, 1933, Watts) & (King Kong, 2005, Faye)

This is a “lossy” decomposition
We lost some constraints/information

The previous example was a “lossless” decomposition.

Decompose StarsIn(movieTitle, movieYear, starName) into:

StarsIn1(movieTitle, movieYear) StarsIn2(movieTitle, starName) ???

movieTitle movieYear
Star wars 1977
King Kong 1933
King Kong 2005

Smaller schemas always good ????

} No sets
} Correct and faithful to the original design
◦ Avoid lossy decompositions

} As little redundancy as possible
◦ To avoid potential anomalies

} No “inability to represent information”
◦ Nulls shouldn’t be required to store information

} Dependency preservation
◦ Should be possible to check for constraints

Not always possible.
We sometimes relax these for:

simpler schemas, and fewer joins during queries.

} Atomicity
◦ It depends primarily on how you use it
◦ A String is not really atomic (can be split into letters), but do you

want to query the letters directly? Or would your queries operate
on the strings?

} Which NF to use?
◦ Your choice – Normalization theory is a tool to help you understand

the tradeoffs
} Normal forms higher than 3NF?
◦ Actually we always use 4NF – we will discuss later

} Trivial FDs
◦ Just means that: RHS is contained in LHS – that’s all

1. We will encode and list all our knowledge about the schema

◦ Functional dependencies (FDs)

SSN à name (means: SSN “implies” length)

◦ If two tuples have the same “SSN”, they must have the same “name”

movietitle à length ???? Not true.

◦ But, (movietitle, movieYear) à length --- True.

2. We will define a set of rules that the schema must follow to be considered
good

◦ “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, …

◦ A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema

Title Year Length StarName Birthdate producerC# Producer
-address

Prdocuer
-name

netWorth

Plane
Crazy

1927 6 NULL NULL WD100 Mickey
Rd

Walt
Disney

100000

Star
Wars

1977 121 H. Ford 7/13/42 GL102 Tatooine George
Lucas

10^9

Star
Wars

1977 121 M. Hamill 9/25/51 GL102 Tatooine George
Lucas

10^9

Star
Wars

1977 121 C. Fisher 10/21/56 GL102 Tatooine George
Lucas

10^9

King
Kong

1933 100 F. Wray 9/15/07 MC100 … … …

King
Kong

2005 187 N. Watts 9/28/68 PJ100 Middle
Earth

Peter
Jackson

10^8

State
Name

State
Code

State
Population

County
Name

County
Population

Senator
Name

Senator
Elected

Senator
Born

Senator
Affiliatio
n

Alabama AL 4779736 Autauga 54571 Jeff
Sessions

1997 1946 ‘R’

Alabama AL 4779736 Baldwin 182265 Jeff
Sessions

1997 1946 ‘R’

Alabama AL 4779736 Barbour 27457 Jeff
Sessions

1997 1946 ‘R’

Alabama AL 4779736 Autauga 54571 Richard
Shelby

1987 1934 ‘R’

Alabama AL 4779736 Baldwin 182265 Richard
Shelby

1987 1934 ‘R’

Alabama AL 4779736 Barbour 27457 Richard
Shelby

1987 1934 ‘R’

Course
ID

Course
Name

Dept
Name

Credits Section
ID

Semester Year Building Room
No.

Capacity Time
Slot ID

Functional dependencies

course_id à title, dept_name, credits
building, room_number à capacity
course_id, section_id, semester, year à building, room_number, time_slot_id

} advisor(s_id, i_id, s_name, s_dept_name, i_name,
i_dept_name)

} friends(userid1, userid2, name1, name2, birthdate1,
birthdate2)

