CMSC424: Database Design Normalization

February 26, 2020

Instructor: Amol Deshpande amol@cs.umd.edu

Desiderata

- No sets
- Correct and faithful to the original design
 - Avoid lossy decompositions
- As little redundancy as possible
 - To avoid potential anomalies
- No "inability to represent information"
 - Nulls shouldn't be required to store information
- Dependency preservation
 - Should be possible to check for constraints

Not always possible.

We sometimes relax these for:

simpler schemas, and fewer joins during queries.

FDs: Example 1

Title	Year	Length	StarName	Birthdate	producerC#	Producer -address	Prdocuer -name	netWorth
Plane Crazy	1927	6	NULL	NULL	WD100	Mickey Rd	Walt Disney	100000
Star Wars	1977	121	H. Ford	7/13/42	GL102	Tatooine	George Lucas	10^9
Star Wars	1977	121	M. Hamill	9/25/51	GL102	Tatooine	George Lucas	10^9
Star Wars	1977	121	C. Fisher	10/21/56	GL102	Tatooine	George Lucas	10^9
King Kong	1933	100	F. Wray	9/15/07	MC100			
King Kong	2005	187	N. Watts	9/28/68	PJ100	Middle Earth	Peter Jackson	10^8

FDs: Example 2

State Name	State Code	State Population	County Name	County Population	Senator Name	Senator Elected	Senator Born	Senator Affiliatio n
Alabama	AL	4779736	Autauga	54571	Jeff Sessions	1997	1946	'R'
Alabama	AL	4779736	Baldwin	182265	Jeff Sessions	1997	1946	'R'
Alabama	AL	4779736	Barbour	27457	Jeff Sessions	1997	1946	'R'
Alabama	AL	4779736	Autauga	54571	Richard Shelby	1987	1934	'R'
Alabama	AL	4779736	Baldwin	182265	Richard Shelby	1987	1934	'R'
Alabama	AL	4779736	Barbour	27457	Richard Shelby	1987	1934	'R'

FDs: Example 3

Course ID	Course Name	Dept Name	Credits	Section ID	Semester	Year	Building	Room No.	Capacity	Time Slot ID
--------------	----------------	--------------	---------	---------------	----------	------	----------	-------------	----------	-----------------

Functional dependencies

course_id \rightarrow title, dept_name, credits building, room_number \rightarrow capacity course_id, section_id, semester, year \rightarrow building, room_number, time_slot_id

Functional Dependencies

Let R be a relation schema and

 $\alpha \subseteq R$ and $\beta \subseteq R$

• The *functional dependency*

 $\alpha \rightarrow \beta$

holds on R iff for any *legal* relations r(R), whenever two tuples t_1 and t_2 of r have same values for α , they have same values for β .

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

• Example:

• On this instance, $A \rightarrow B$ does **NOT** hold, but $B \rightarrow A$ does hold.

Functional Dependencies

Difference between holding on an *instance* and holding on *all legal relation*

Title	Year	Length	inColor	StudioName	prodC#	StarName
Star wars	1977	121	Yes	Fox	128	Hamill
Star wars	1977	121	Yes	Fox	128	Fisher
Star wars	1977	121	Yes	Fox	128	H. Ford
King Kong	1933	100	no	RKO	20	Fay

Title \rightarrow Year holds on this instance

Is this a true functional dependency ? No.

Two movies in different years can have the same name. Can't draw conclusions based on a single instance

Need to use domain knowledge to decide which FDs hold

FDs and Redundancy

- Consider a table: R(<u>A</u>, B, C):
 - With FDs: $B \rightarrow C$, and $A \rightarrow BC$
 - So "A" is a Key, but "B" is not
- So: there is a FD whose left hand side is not a key
 - Leads to redundancy

Since B is not unique, it may be duplicated Every time B is duplicated, so is C

Not a problem with $A \rightarrow BC$ A can never be duplicated

Not a duplication → Two different tuples just happen to have the same value for C

FDs and Redundancy

Better to split it up

А	В
al	b1
a2	b1
a3	b1
a4	b2
a5	b2
a6	b3
a7	b4

BCNF: Boyce-Codd Normal Form

- A relation schema *R* is "in BCNF" if:
 - Every functional dependency A → B that holds on it is EITHER:
 1. Trivial OR
 - 2. A is a superkey of R

Why is BCNF good ?

- Guarantees that there can be no redundancy because of a functional dependency
- Consider a relation r(A, B, C, D) with functional dependency
 A → B and two tuples: (a1, b1, c1, d1), and (a1, b1, c2, d2)
 - *b1* is repeated because of the functional dependency
 - BUT this relation is not in BCNF
 - $A \rightarrow B$ is neither trivial nor is A a superkey for the relation

Functional Dependencies

- Functional dependencies and keys
 - A key constraint is a specific form of a FD.
 - E.g. if A is a superkey for R, then:

 $A \rightarrow R$

- Similarly for candidate keys and primary keys.
- Deriving FDs
 - A set of FDs may imply other FDs
 - e.g. If $A \rightarrow B$, and $B \rightarrow C$, then clearly $A \rightarrow C$
 - We will see a formal method for inferring this later

Definitions

- 1. A relation instance *r* satisfies a set of functional dependencies, *F*, if the FDs hold on the relation
- 2. F holds on a relation schema R if no legal (allowable) relation instance of R violates it
- 3. A functional dependency, $A \rightarrow B$, is called *trivial* if:
 - **B** is a subset of **A**
 - e.g. Movieyear, length \rightarrow length
- 4. Given a set of functional dependencies, F, its closure,
 F⁺, is all the FDs that are implied by FDs in F.

Approach

1. We will encode and list all our knowledge about the schema

- Functional dependencies (FDs)
- Also:
 - Multi-valued dependencies (briefly discuss later)
 - Join dependencies etc...

2. We will define a set of rules that the schema must follow to be considered good

- "Normal forms": 1NF, 2NF, 3NF, BCNF, 4NF, ...
- A normal form specifies constraints on the schemas and FDs
- 3. If not in a "normal form", we modify the schema

BCNF: Boyce-Codd Normal Form

- A relation schema *R* is "in BCNF" if:
 - Every functional dependency A → B that holds on it is EITHER:
 1. Trivial OR
 - 2. A is a superkey of R

Why is BCNF good ?

- Guarantees that there can be no redundancy because of a functional dependency
- Consider a relation r(A, B, C, D) with functional dependency
 A → B and two tuples: (a1, b1, c1, d1), and (a1, b1, c2, d2)
 - *b1* is repeated because of the functional dependency
 - BUT this relation is not in BCNF
 - $A \rightarrow B$ is neither trivial nor is A a superkey for the relation

BCNF and Redundancy

- Why does redundancy arise ?
 - Given a FD, A \rightarrow B, if A is repeated (B A) has to be repeated
 - 1. If rule 1 is satisfied, (B A) is empty, so not a problem.
 - 2. If rule 2 is satisfied, then A can't be repeated, so this doesn't happen either
- Hence no redundancy because of FDs
 - Redundancy may exist because of other types of dependencies
 - Higher normal forms used for that (specifically, 4NF)
 - Data may naturally have duplicated/redundant data
 - We can't control that unless a FD or some other dependency is defined

Approach

1. We will encode and list all our knowledge about the schema

- Functional dependencies (FDs); Multi-valued dependencies; Join dependencies etc...
- 2. We will define a set of rules that the schema must follow to be considered good
 - "Normal forms": 1NF, 2NF, 3NF, BCNF, 4NF, ...
 - A normal form specifies constraints on the schemas and FDs
- 3. If not in a "normal form", we modify the schema
 - Through lossless decomposition (splitting)
 - Or direct construction using the dependencies information

BCNF

- What if the schema is not in BCNF ?
 - Decompose (split) the schema into two pieces.
- From the previous example: split the schema into:
 - r1(A, B), r2(A, C, D)
 - The first schema is in BCNF, the second one may not be (and may require further decomposition)
 - No repetition now: *r1* contains (*a1, b1*), but *b1* will not be repeated
- Careful: you want the decomposition to be lossless
 - No information should be lost
 - The above decomposition is lossless
 - We will define this more formally later

Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem

1. Closure

- Given a set of functional dependencies, F, its closure, F⁺, is all FDs that are implied by FDs in F.
 - e.g. If $A \rightarrow B$, and $B \rightarrow C$, then clearly $A \rightarrow C$
- We can find F+ by applying Armstrong's Axioms:
 - if $\beta \subseteq \alpha$, then $\alpha \to \beta$ (reflexivity)
 - if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$ (augmentation)
 - if $\alpha \rightarrow \beta$, and $\beta \rightarrow \gamma$, then $\alpha \rightarrow \gamma$ (transitivity)

These rules are

- sound (generate only functional dependencies that actually hold)
- complete (generate all functional dependencies that hold)

Additional rules

- If $\alpha \rightarrow \beta a$ nd $\alpha \rightarrow \gamma$, then $\alpha \rightarrow \beta \gamma$ (union)
- If $\alpha \rightarrow \beta \gamma$, then $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$ (decomposition)
- If $\alpha \rightarrow \beta$ and $\gamma \beta \rightarrow \delta$, then $\alpha \gamma \rightarrow \delta$ (pseudotransitivity)

The above rules can be inferred from Armstrong's axioms.

Example

$$R = (A, B, C, G, H, I)$$

$$F = \{A \rightarrow B$$

$$A \rightarrow C$$

$$CG \rightarrow H$$

$$CG \rightarrow I$$

$$B \rightarrow H\}$$

- Some members of F⁺
 - $\circ \ \mathsf{A} \to \mathsf{H}$
 - by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - $\circ \ \mathsf{AG} \to \mathsf{I}$
 - by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
 - $^{\circ} \ \mathsf{CG} \to \mathsf{HI}$
 - by augmenting $CG \rightarrow I$ to infer $CG \rightarrow CGI$, and augmenting of $CG \rightarrow H$ to infer $CGI \rightarrow HI$, and then transitivity

2. Closure of an attribute set

- Given a set of attributes A and a set of FDs F, closure of A under
 F is the set of all attributes implied by A
- In other words, the largest B such that: $A \rightarrow B$
- Redefining *super keys:*
 - The closure of a super key is the entire relation schema
- Redefining *candidate keys:*
 - 1. It is a super key
 - 2. No subset of it is a super key

Computing the closure for A

- Simple algorithm
- ▶ 1. Start with *B* = *A*.
- ▶ 2. Go over all functional dependencies, $\beta \rightarrow \gamma$, in F^+
- ▶ 3. If $\beta \subseteq B$, then
 - Add γ to *B*
- 4. Repeat till *B* changes

Example

$$R = (A, B, C, G, H, I)$$

$$F = \{A \rightarrow B$$

$$A \rightarrow C$$

$$CG \rightarrow H$$

$$CG \rightarrow I$$

$$B \rightarrow H\}$$

- (AG) +?
 - 1. result = AG
 - 2.result = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$
 - 3.result = ABCGH (CG \rightarrow H and CG \subseteq AGBC)
 - 4.result = ABCGHI (CG \rightarrow I and CG \subseteq AGBCH
- Is (AG) a candidate key ?
 - 1. It is a super key.
 - 2. (A+) = ABCH, (G+) = G.

YES.

Uses of attribute set closures

- Determining superkeys and candidate keys
- Determining if $A \rightarrow B$ is a valid FD
 - Check if A+ contains B
- Can be used to compute F+

3. Extraneous Attributes

- Consider F, and a functional dependency, $A \rightarrow B$.
- "Extraneous": Are there any attributes in A or B that can be safely removed ?

Without changing the constraints implied by F

- Example: Given $F = \{A \rightarrow C, AB \rightarrow CD\}$
 - C is extraneous in AB \rightarrow CD since AB \rightarrow C can be inferred even after deleting C
 - ie., given: A → C, and AB → D, we can use Armstrong Axioms to infer AB → CD

4. Canonical Cover

- A canonical cover for F is a set of dependencies F_c such that
 - F logically implies all dependencies in F_c, and
 - F_c logically implies all dependencies in F, and
 - No functional dependency in F_c contains an extraneous attribute, and
 - Each left side of functional dependency in F_c is unique
- In some (vague) sense, it is a minimal version of F
- Read up algorithms to compute F_c

Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem

Loss-less Decompositions

Definition: A decomposition of R into (R1, R2) is called lossless if, for all legal instance of r(R):

 $r = \prod_{R_1} (r) \qquad \prod_{R_2} (r)$

- In other words, projecting on R1 and R2, and joining back, results in the relation you started with
- ▶ Rule: A decomposition of R into (R1, R2) is lossless, iff: $R1 \cap R2 \rightarrow R1 \quad or \quad R1 \cap R2 \rightarrow R2$ in F+.

Dependency-preserving Decompositions

Is it easy to check if the dependencies in F hold ?

Okay as long as the dependencies can be checked in the same table. Consider R = (A, B, C), and $F = \{A \rightarrow B, B \rightarrow C\}$

1. Decompose into R1 = (A, B), and R2 = (A, C)

Lossless ? Yes.

But, makes it hard to check for $B \rightarrow C$

The data is in multiple tables.

2. On the other hand, *R1* = (*A*, *B*), and *R2* = (*B*, *C*),

is both lossless and dependency-preserving Really ? What about $A \rightarrow C$?

If we can check $A \rightarrow B$, and $B \rightarrow C$, $A \rightarrow C$ is implied.

Dependency-preserving Decompositions

- Definition:
 - Consider decomposition of *R into R1, ..., Rn*.
 - Let F_i be the set of dependencies F⁺ that include only attributes in R_i.
- The decomposition is dependency preserving, if $(F_1 \cup F_2 \cup ... \cup F_n)^+ = F^+$

Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- **BCNF**
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem

BCNF

- Given a relation schema *R*, and a set of functional dependencies *F*, if every FD, $A \rightarrow B$, is either:
 - 1. Trivial
 - 2. A is a superkey of R
 - Then, R is in BCNF (Boyce-Codd Normal Form)
 - What if the schema is not in BCNF ?
 - Decompose (split) the schema into two pieces.
 - Careful: you want the decomposition to be lossless

Achieving BCNF Schemas

For all dependencies $A \rightarrow B$ in F+, check if A is a superkey

By using attribute closure

If not, then

Choose a dependency in F+ that breaks the BCNF rules, say A \rightarrow B Create R1 = A B Create R2 = A (R - B - A) Note that: R1 \cap R2 = A and A \rightarrow AB (= R1), so this is lossless decomposition

Repeat for *R1, and R2*

By defining F1+ to be all dependencies in F that contain only attributes in R1 Similarly F2+

Example 1

Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem

BCNF may not preserve dependencies

- R = (J, K, L)
- $F = \{JK \to L, L \to K\}$
- Two candidate keys = JK and JL
- R is not in BCNF
- Any decomposition of *R* will fail to preserve $JK \rightarrow L$
- This implies that testing for $JK \rightarrow L$ requires a join

BCNF may not preserve dependencies

- Not always possible to find a dependency-preserving decomposition that is in BCNF.
- PTIME to determine if there exists a dependencypreserving decomposition in BCNF
 in size of F
- NP-Hard to find one if it exists
- Better results exist if F satisfies certain properties

Outline

- Mechanisms and definitions to work with FDs
 - Closures, candidate keys, canonical covers etc...
 - Armstrong axioms
- Decompositions
 - Loss-less decompositions, Dependency-preserving decompositions
- BCNF
 - How to achieve a BCNF schema
- BCNF may not preserve dependencies
- 3NF: Solves the above problem
- BCNF allows for redundancy
- 4NF: Solves the above problem