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} No sets
} Correct and faithful to the original design
◦ Avoid lossy decompositions

} As little redundancy as possible
◦ To avoid potential anomalies

} No “inability to represent information”
◦ Nulls shouldn’t be required to store information

} Dependency preservation
◦ Should be possible to check for constraints

Not always possible. 
We sometimes relax these for: 

simpler schemas, and fewer joins during queries.



Title Year Length StarName Birthdate producerC# Producer
-address

Prdocuer
-name

netWorth

Plane
Crazy

1927 6 NULL NULL WD100 Mickey
Rd

Walt 
Disney

100000

Star 
Wars

1977 121 H. Ford 7/13/42 GL102 Tatooine George 
Lucas

10^9

Star 
Wars

1977 121 M. Hamill 9/25/51 GL102 Tatooine George 
Lucas

10^9

Star 
Wars

1977 121 C. Fisher 10/21/56 GL102 Tatooine George 
Lucas

10^9

King 
Kong

1933 100 F. Wray 9/15/07 MC100 … … …

King 
Kong

2005 187 N. Watts 9/28/68 PJ100 Middle
Earth

Peter 
Jackson

10^8



State 
Name

State 
Code

State
Population

County
Name

County 
Population

Senator
Name

Senator
Elected

Senator
Born

Senator
Affiliatio
n

Alabama AL 4779736 Autauga 54571 Jeff 
Sessions

1997 1946 ‘R’

Alabama AL 4779736 Baldwin 182265 Jeff 
Sessions

1997 1946 ‘R’

Alabama AL 4779736 Barbour 27457 Jeff 
Sessions

1997 1946 ‘R’

Alabama AL 4779736 Autauga 54571 Richard 
Shelby

1987 1934 ‘R’

Alabama AL 4779736 Baldwin 182265 Richard 
Shelby

1987 1934 ‘R’

Alabama AL 4779736 Barbour 27457 Richard 
Shelby

1987 1934 ‘R’



Course
ID

Course
Name

Dept 
Name

Credits Section
ID

Semester Year Building Room 
No.

Capacity Time
Slot ID

Functional dependencies

course_id à title, dept_name, credits
building, room_number à capacity
course_id, section_id, semester, year à building, room_number, time_slot_id



} Let R be a relation schema and 
a Í R  and  b Í R

} The functional dependency
a® b

holds on R iff for any legal relations r(R), whenever two tuples t1 and t2 of r
have same values for a, they have same values for b. 

t1[a] = t2 [a]   Þ t1[b ]  = t2 [b ] 
} Example:

} On this instance, A ® B does NOT hold, but  B ® A does hold.

1 4
1     5
3 7

A     B



Difference between holding on an instance and holding on all legal relation

Title à Year holds on this instance

Is this a true functional dependency ? No.
Two movies in different years can have the same name.

Can’t draw conclusions based on a single instance
Need to use domain knowledge to decide which FDs hold

Title Year Length inColor StudioName prodC# StarName

Star wars 1977 121 Yes Fox 128 Hamill

Star wars 1977 121 Yes Fox 128 Fisher

Star wars 1977 121 Yes Fox 128 H. Ford

King Kong 1933 100 no RKO 20 Fay



} Consider a table: R(A, B, C):
◦ With FDs: B à C, and A à BC
◦ So “A” is a Key, but “B” is not

} So: there is a FD whose left hand side is not a key
◦ Leads to redundancy

A B C
a1 b1 c1
a2 b1 c1
a3 b1 c1
a4 b2 c2
a5 b2 c2
a6 b3 c3
a7 b4 c1

Since B is not unique, it may be duplicated
Every time B is duplicated, so is C

Not a problem with A à BC
A can never be duplicated

Not a duplication à Two different tuples just 
happen to have the same value for C



} Better to split it up

A B
a1 b1
a2 b1
a3 b1
a4 b2
a5 b2
a6 b3
a7 b4

Not a duplication à Two different tuples just 
happen to have the same value for C

B C
b1 c1
b2 c2
b3 c3
b4 c1



} A relation schema R is “in BCNF” if:
◦ Every functional dependency A à B that holds on it is EITHER:

1. Trivial OR
2. A is a superkey of R

} Why is BCNF good ?
◦ Guarantees that there can be no redundancy because of a 

functional dependency
◦ Consider a relation r(A, B, C, D) with functional dependency 

A à B and two tuples: (a1, b1, c1, d1), and (a1, b1, c2, d2)
� b1 is repeated because of the functional dependency
� BUT this relation is not in BCNF

� A à B is neither trivial nor is A a superkey for the relation



} Functional dependencies and keys
◦ A key constraint is a specific form of a FD.
◦ E.g. if A is a superkey for R, then:

A à R
◦ Similarly for candidate keys and primary keys.

} Deriving FDs
◦ A set of FDs may imply other FDs
◦ e.g. If A à B, and B à C, then clearly A à C

◦ We will see a formal method for inferring this later



1. A relation instance r satisfies a set of functional 
dependencies, F, if the FDs hold on the relation

2. F holds on a relation schema R if no legal (allowable) 
relation instance of R violates it

3. A functional dependency, A à B, is called trivial if:
◦ B is a subset of A
◦ e.g. Movieyear, length à length

4. Given a set of functional dependencies, F, its closure, 
F+ , is all the FDs that are implied by FDs in F. 



1. We will encode and list all our knowledge about the schema
◦ Functional dependencies (FDs)

◦ Also:
� Multi-valued dependencies (briefly discuss later)

� Join dependencies etc…

2. We will define a set of rules that the schema must follow to 
be considered good
◦ “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, …

◦ A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema 



} A relation schema R is “in BCNF” if:
◦ Every functional dependency A à B that holds on it is EITHER:

1. Trivial OR
2. A is a superkey of R

} Why is BCNF good ?
◦ Guarantees that there can be no redundancy because of a 

functional dependency
◦ Consider a relation r(A, B, C, D) with functional dependency 

A à B and two tuples: (a1, b1, c1, d1), and (a1, b1, c2, d2)
� b1 is repeated because of the functional dependency
� BUT this relation is not in BCNF

� A à B is neither trivial nor is A a superkey for the relation



} Why does redundancy arise ?
◦ Given a FD, A à B, if A is repeated (B – A) has to be repeated 
1. If rule 1 is satisfied, (B – A) is empty, so not a problem.
2. If rule 2 is satisfied, then A can’t be repeated, so this doesn’t 

happen either

} Hence no redundancy because of FDs
◦ Redundancy may exist because of other types of dependencies
� Higher normal forms used for that (specifically, 4NF)
◦ Data may naturally have duplicated/redundant data
� We can’t control that unless a FD or some other dependency is 

defined



1. We will encode and list all our knowledge about the schema
◦ Functional dependencies (FDs); Multi-valued dependencies; Join 

dependencies etc…

2. We will define a set of rules that the schema must follow to 
be considered good
◦ “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, …

◦ A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema
◦ Through lossless decomposition (splitting)
◦ Or direct construction using the dependencies information



} What if the schema is not in BCNF ?
◦ Decompose (split) the schema into two pieces.

} From the previous example: split the schema into:
◦ r1(A, B),  r2(A, C, D)
◦ The first schema is in BCNF, the second one may not be (and may 

require further decomposition)
◦ No repetition now: r1 contains (a1, b1), but b1 will not be repeated

} Careful: you want the decomposition to be lossless
◦ No information should be lost
� The above decomposition is lossless
◦ We will define this more formally later



} Mechanisms and definitions to work with FDs

◦ Closures, candidate keys, canonical covers etc…

◦ Armstrong axioms

} Decompositions

◦ Loss-less decompositions, Dependency-preserving decompositions

} BCNF

◦ How to achieve a BCNF schema

} BCNF may not preserve dependencies

} 3NF: Solves the above problem

} BCNF allows for redundancy

} 4NF: Solves the above problem



} Given a set of functional dependencies, F, its closure, F+ , is 
all FDs that are implied by FDs in F. 
◦ e.g. If A à B, and B à C, then clearly A à C

} We can find F+ by applying Armstrong’s Axioms:
◦ if b Í a, then a® b (reflexivity)
◦ if a® b, then g a ® g b (augmentation)
◦ if a® b, and b® g, then a® g (transitivity)

} These rules are 
◦ sound (generate only functional dependencies that actually hold) 
◦ complete (generate all functional dependencies that hold)



} If a® b and a® g, then a® b g (union)

} If a® b g, then a® b and a® g (decomposition)

} If a® b and g b ® d, then a g ® d (pseudotransitivity)

} The above rules can be inferred from Armstrong’s axioms.



} R = (A, B, C, G, H, I)
F = {  A ® B

A ® C
CG ® H
CG ® I

B ® H}
} Some members of F+

◦ A ® H        
� by transitivity from A ® B and B ® H

◦ AG ® I       
� by augmenting A ® C with G, to get AG ® CG 

and then transitivity with CG ® I 
◦ CG ® HI     

� by augmenting CG ® I to infer CG ® CGI, 
and augmenting of CG ® H to infer CGI ® HI, 

and then transitivity



} Given a set of attributes A and a set of FDs F, closure of A under 
F is the set of all attributes implied by A

} In other words, the largest B such that: A à B

} Redefining super keys:
◦ The closure of a super key is the entire relation schema

} Redefining candidate keys:
1. It is a super key
2. No subset of it is a super key



} Simple algorithm

} 1. Start with B = A.
} 2. Go over all functional dependencies, b® g , in F+

} 3. If b Í B, then
Add g to B

} 4. Repeat till B changes



} R = (A, B, C, G, H, I)
F = {  A ® B

A ® C
CG ® H
CG ® I

B ® H}

} (AG) + ?
◦ 1. result = AG
◦ 2.result = ABCG (A ® C and A ® B)
◦ 3.result = ABCGH (CG ® H and CG Í AGBC)
◦ 4.result = ABCGHI (CG ® I and CG Í AGBCH

} Is (AG) a candidate key ?
1. It is a super key.
2. (A+) = ABCH, (G+) = G.
YES.



} Determining superkeys and candidate keys

} Determining if A à B is a valid FD
◦ Check if A+ contains B

} Can be used to compute F+



} Consider F, and a functional dependency, A à B.

} “Extraneous”: Are there any attributes in A or B that can 
be safely removed ?

Without changing the constraints implied by F

} Example:  Given F = {A ® C, AB ® CD}
◦ C is extraneous in AB ® CD since  AB ® C can be inferred even 

after deleting C
◦ ie., given: A à C, and AB à D, we can use Armstrong Axioms to 

infer AB à CD



} A canonical cover for F is a set of dependencies Fc such 
that 
◦ F logically implies all dependencies in Fc, and 
◦ Fc logically implies all dependencies in F, and
◦ No functional dependency in Fc contains an extraneous 

attribute, and
◦ Each left side of functional dependency in Fc is unique

} In some (vague) sense, it is a minimal version of F

} Read up algorithms to compute Fc



} Mechanisms and definitions to work with FDs

◦ Closures, candidate keys, canonical covers etc…

◦ Armstrong axioms

} Decompositions

◦ Loss-less decompositions, Dependency-preserving decompositions

} BCNF

◦ How to achieve a BCNF schema

} BCNF may not preserve dependencies

} 3NF: Solves the above problem

} BCNF allows for redundancy

} 4NF: Solves the above problem



} Definition: A decomposition of R into (R1, R2) is called lossless 
if, for all legal instance of r(R):

r = ÕR1 (r )      ÕR2 (r ) 

} In other words, projecting on R1 and R2, and joining back, 
results in the relation you started with

} Rule: A decomposition of R into (R1, R2) is lossless, iff:
R1 ∩ R2 à R1 or     R1 ∩ R2 à R2

in F+.



Is it easy to check if the dependencies in F hold ?

Okay as long as the dependencies can be checked in the same table.

Consider R = (A, B, C), and F ={A à B, B à C}

1. Decompose into R1 = (A, B), and R2 = (A, C)

Lossless ? Yes.

But, makes it hard to check for B à C

The data is in multiple tables.

2. On the other hand, R1 = (A, B), and R2 = (B, C),

is both lossless and dependency-preserving

Really ? What about A à C ?

If we can check A à B, and B à C, A à C is implied.



} Definition: 
◦ Consider decomposition of R into R1, …, Rn.
◦ Let Fi be the set of dependencies F + that include only attributes 

in Ri. 

} The decomposition is  dependency preserving,  if
(F1 È F2 È … È Fn )+ = F +



} Mechanisms and definitions to work with FDs

◦ Closures, candidate keys, canonical covers etc…

◦ Armstrong axioms

} Decompositions

◦ Loss-less decompositions, Dependency-preserving decompositions

} BCNF

◦ How to achieve a BCNF schema

} BCNF may not preserve dependencies

} 3NF: Solves the above problem

} BCNF allows for redundancy

} 4NF: Solves the above problem



} Given a relation schema R, and a set of functional 
dependencies F, if every FD, A à B, is either:

1. Trivial
2. A is a superkey of R

Then, R is in BCNF (Boyce-Codd Normal Form)

} What if the schema is not in BCNF ?
◦ Decompose (split) the schema into two pieces.
◦ Careful: you want the decomposition to be lossless



For all dependencies A à B in F+, check if A is a superkey
By using attribute closure

If not, then 
Choose a dependency in F+ that breaks the BCNF rules, say A à B
Create R1 = A B
Create R2 = A (R – B – A)
Note that: R1 ∩ R2 = A and A à AB (= R1), so this is lossless decomposition

Repeat for R1, and R2
By defining F1+ to be all dependencies in F that contain only attributes in R1
Similarly F2+



B à C

R = (A, B, C)
F = {A à B, B à C}

Candidate keys = {A}
BCNF = No. B à C violates.

R1 = (B, C)
F1 = {B à C}

Candidate keys = {B}
BCNF = true

R2 = (A, B)
F2 = {A à B}

Candidate keys = {A}
BCNF = true



R3 = (A, C, D)
F3 = {AC à D}

Candidate keys = {AC}
BCNF = true

A à B

R = (A, B, C, D, E)
F = {A à B, BC à D}

Candidate keys = {ACE}
BCNF = Violated by {A à B, BC à D} etc…

R1 = (A, B)
F1 = {A à B}

Candidate keys = {A}
BCNF = true

R2 = (A, C, D, E)
F2 = {AC à D}

Candidate keys = {ACE}
BCNF = false (AC à D)

From A à B and BC à D by 
pseudo-transitivity

AC à D

R4 = (A, C, E)
F4 = {}  [[ only trivial ]]

Candidate keys = {ACE}
BCNF = true

Dependency preservation ???
We can check: 

A à B (R1), AC à D (R3), 
but we lost BC à D

So this is not a dependency
-preserving decomposition



R3 = (A, B)
F3 = {A à B}

Candidate keys = {A}
BCNF = true

BC à D

R = (A, B, C, D, E)
F = {A à B, BC à D}

Candidate keys = {ACE}
BCNF = Violated by {A à B, BC à D} etc…

R1 = (B, C, D)
F1 = {BC à D}

Candidate keys = {BC}
BCNF = true

R2 = (B, C, A, E)
F2 = {A à B}

Candidate keys = {ACE}
BCNF = false (A à B)

A à B

R4 = (A, C, E)
F4 = {}  [[ only trivial ]]

Candidate keys = {ACE}
BCNF = true

Dependency preservation ???
We can check: 

BC à D (R1), A à B (R3), 
Dependency-preserving
decomposition



A à BC

R = (A, B, C, D, E, H)
F = {A à BC, E à HA}
Candidate keys = {DE}

BCNF = Violated by {A à BC} etc…

R1 = (A, B, C)
F1 = {A à BC}

Candidate keys = {A}
BCNF = true

R2 = (A, D, E, H)
F2 = {E à HA}

Candidate keys = {DE}
BCNF = false (E à HA)

E à HA

R3 = (E, H, A)
F3 = {E à HA}

Candidate keys = {E}
BCNF = true

R4 = (ED)
F4 = {}  [[ only trivial ]]
Candidate keys = {DE}

BCNF = true

Dependency preservation ???
We can check: 

A à BC (R1), E à HA (R3), 
Dependency-preserving
decomposition



} Mechanisms and definitions to work with FDs

◦ Closures, candidate keys, canonical covers etc…

◦ Armstrong axioms

} Decompositions

◦ Loss-less decompositions, Dependency-preserving decompositions

} BCNF

◦ How to achieve a BCNF schema

} BCNF may not preserve dependencies

} 3NF: Solves the above problem

} BCNF allows for redundancy

} 4NF: Solves the above problem



} R = (J, K, L}
} F = {JK ® L, L ® K }

} Two candidate keys = JK and JL

} R is not in BCNF

} Any decomposition of R will fail to preserve
JK ® L

} This implies that testing for JK ® L requires a join



} Not always possible to find a dependency-preserving 
decomposition that is in BCNF.

} PTIME to determine if there exists a dependency-
preserving decomposition in BCNF
◦ in size of F

} NP-Hard to find one if it exists

} Better results exist if F satisfies certain properties



} Mechanisms and definitions to work with FDs

◦ Closures, candidate keys, canonical covers etc…

◦ Armstrong axioms

} Decompositions

◦ Loss-less decompositions, Dependency-preserving decompositions

} BCNF

◦ How to achieve a BCNF schema

} BCNF may not preserve dependencies

} 3NF: Solves the above problem

} BCNF allows for redundancy

} 4NF: Solves the above problem


