
Instructor: Amol Deshpande
amol@cs.umd.edu

} Wrap up Normalization

} Projects
◦ Will start using ELMS for announcements
◦ Regrading etc.
◦ Project 3 uploaded – will post officially after a review today

} Midterm 1 on Wednesday: Questions?

} Next topic:
◦ How to ”execute” an SQL Query?
◦ Today: General background and alternatives

1. We will encode and list all our knowledge about the schema
◦ Functional dependencies (FDs)

◦ Also:
� Multi-valued dependencies (briefly discuss later)

� Join dependencies etc…

2. We will define a set of rules that the schema must follow to
be considered good
◦ “Normal forms”: 1NF, 2NF, 3NF, BCNF, 4NF, …
◦ A normal form specifies constraints on the schemas and FDs

3. If not in a “normal form”, we modify the schema

} A relation schema R is “in BCNF” if:
◦ Every functional dependency A à B that holds on it is EITHER:

1. Trivial OR
2. A is a superkey of R

} Why is BCNF good ?
◦ Guarantees that there can be no redundancy because of a

functional dependency
◦ Consider a relation r(A, B, C, D) with functional dependency

A à B and two tuples: (a1, b1, c1, d1), and (a1, b1, c2, d2)
� b1 is repeated because of the functional dependency
� BUT this relation is not in BCNF

� A à B is neither trivial nor is A a superkey for the relation

} Mechanisms and definitions to work with FDs

◦ Closures, candidate keys, canonical covers etc…

◦ Armstrong axioms

} Decompositions
◦ Loss-less decompositions, Dependency-preserving decompositions

} BCNF
◦ How to achieve a BCNF schema

} BCNF may not preserve dependencies

} 3NF: Solves the above problem

} BCNF allows for redundancy

} 4NF: Solves the above problem

} Given a set of functional dependencies, F, its closure, F+ , is
all FDs that are implied by FDs in F.
◦ e.g. If A à B, and B à C, then clearly A à C

} We can find F+ by applying Armstrong’s Axioms:
◦ if b Í a, then a® b (reflexivity)
◦ if a® b, then g a® g b (augmentation)
◦ if a® b, and b® g, then a® g (transitivity)

} These rules are
◦ sound (generate only functional dependencies that actually hold)
◦ complete (generate all functional dependencies that hold)

} If a® b and a® g, then a® b g (union)

} If a® b g, then a® b and a® g (decomposition)

} If a® b and g b ® d, then a g ® d (pseudotransitivity)

} The above rules can be inferred from Armstrong’s axioms.

} R = (A, B, C, G, H, I)
F = { A ® B

A ® C
CG ® H
CG ® I

B ® H}
} Some members of F+
◦ A ® H

� by transitivity from A ® B and B ® H
◦ AG ® I

� by augmenting A ® C with G, to get AG ® CG
and then transitivity with CG ® I

◦ CG ® HI
� by augmenting CG ® I to infer CG ® CGI,

and augmenting of CG ® H to infer CGI ® HI,
and then transitivity

} Given a set of attributes A and a set of FDs F, closure of A under
F is the set of all attributes implied by A

} In other words, the largest B such that: A à B

} Redefining super keys:
◦ The closure of a super key is the entire relation schema

} Redefining candidate keys:
1. It is a super key
2. No subset of it is a super key

} Simple algorithm

} 1. Start with B = A.
} 2. Go over all functional dependencies, b ® g , in F+

} 3. If b Í B, then
Add g to B

} 4. Repeat till B changes

} R = (A, B, C, G, H, I)
F = { A ® B

A ® C
CG ® H
CG ® I

B ® H}

} (AG) + ?
◦ 1. result = AG
◦ 2.result = ABCG (A ® C and A ® B)
◦ 3.result = ABCGH (CG ® H and CG Í AGBC)
◦ 4.result = ABCGHI (CG ® I and CG Í AGBCH

} Is (AG) a candidate key ?
1. It is a super key.
2. (A+) = ABCH, (G+) = G.
YES.

} Determining superkeys and candidate keys

} Determining if A à B is a valid FD
◦ Check if A+ contains B

} Can be used to compute F+

} Consider F, and a functional dependency, A à B.

} “Extraneous”: Are there any attributes in A or B that can
be safely removed ?

Without changing the constraints implied by F

} Example: Given F = {A ® C, AB ® CD}
◦ C is extraneous in AB ® CD since AB ® C can be inferred even

after deleting C
◦ ie., given: A à C, and AB à D, we can use Armstrong Axioms to

infer AB à CD

} A canonical cover for F is a set of dependencies Fc such
that
◦ F logically implies all dependencies in Fc, and
◦ Fc logically implies all dependencies in F, and
◦ No functional dependency in Fc contains an extraneous

attribute, and
◦ Each left side of functional dependency in Fc is unique

} In some (vague) sense, it is a minimal version of F

} Read up algorithms to compute Fc

} Mechanisms and definitions to work with FDs

◦ Closures, candidate keys, canonical covers etc…

◦ Armstrong axioms

} Decompositions
◦ Loss-less decompositions, Dependency-preserving decompositions

} BCNF
◦ How to achieve a BCNF schema

} BCNF may not preserve dependencies

} 3NF: Solves the above problem

} BCNF allows for redundancy

} 4NF: Solves the above problem

} Definition: A decomposition of R into (R1, R2) is called lossless
if, for all legal instance of r(R):

r = ÕR1 (r) ÕR2 (r)

} In other words, projecting on R1 and R2, and joining back,
results in the relation you started with

} Rule: A decomposition of R into (R1, R2) is lossless, iff:

R1 ∩ R2 à R1 or R1 ∩ R2 à R2
in F+.

Is it easy to check if the dependencies in F hold ?

Okay as long as the dependencies can be checked in the same table.

Consider R = (A, B, C), and F ={A à B, B à C}

1. Decompose into R1 = (A, B), and R2 = (A, C)

Lossless ? Yes.

But, makes it hard to check for B à C

The data is in multiple tables.

2. On the other hand, R1 = (A, B), and R2 = (B, C),

is both lossless and dependency-preserving

Really ? What about A à C ?

If we can check A à B, and B à C, A à C is implied.

} Definition:
◦ Consider decomposition of R into R1, …, Rn.
◦ Let Fi be the set of dependencies F + that include only attributes

in Ri.

} The decomposition is dependency preserving, if
(F1 È F2 È … È Fn)+ = F +

} Mechanisms and definitions to work with FDs

◦ Closures, candidate keys, canonical covers etc…

◦ Armstrong axioms

} Decompositions
◦ Loss-less decompositions, Dependency-preserving decompositions

} BCNF
◦ How to achieve a BCNF schema

} BCNF may not preserve dependencies

} 3NF: Solves the above problem

} BCNF allows for redundancy

} 4NF: Solves the above problem

} Given a relation schema R, and a set of functional
dependencies F, if every FD, A à B, is either:

1. Trivial
2. A is a superkey of R

Then, R is in BCNF (Boyce-Codd Normal Form)

} What if the schema is not in BCNF ?
◦ Decompose (split) the schema into two pieces.
◦ Careful: you want the decomposition to be lossless

For all dependencies A à B in F+, check if A is a superkey
By using attribute closure

If not, then
Choose a dependency in F+ that breaks the BCNF rules, say A à B
Create R1 = A B
Create R2 = A (R – B – A)
Note that: R1 ∩ R2 = A and A à AB (= R1), so this is lossless decomposition

Repeat for R1, and R2
By defining F1+ to be all dependencies in F that contain only attributes in R1
Similarly F2+

B à C

R = (A, B, C)
F = {A à B, B à C}

Candidate keys = {A}
BCNF = No. B à C violates.

R1 = (B, C)
F1 = {B à C}

Candidate keys = {B}
BCNF = true

R2 = (A, B)
F2 = {A à B}

Candidate keys = {A}
BCNF = true

R3 = (A, C, D)
F3 = {AC à D}

Candidate keys = {AC}
BCNF = true

A à B

R = (A, B, C, D, E)
F = {A à B, BC à D}

Candidate keys = {ACE}
BCNF = Violated by {A à B, BC à D} etc…

R1 = (A, B)
F1 = {A à B}

Candidate keys = {A}
BCNF = true

R2 = (A, C, D, E)
F2 = {AC à D}

Candidate keys = {ACE}
BCNF = false (AC à D)

From A à B and BC à D by
pseudo-transitivity

AC à D

R4 = (A, C, E)
F4 = {} [[only trivial]]

Candidate keys = {ACE}
BCNF = true

Dependency preservation ???
We can check:

A à B (R1), AC à D (R3),
but we lost BC à D

So this is not a dependency
-preserving decomposition

R3 = (A, B)
F3 = {A à B}

Candidate keys = {A}
BCNF = true

BC à D

R = (A, B, C, D, E)
F = {A à B, BC à D}

Candidate keys = {ACE}
BCNF = Violated by {A à B, BC à D} etc…

R1 = (B, C, D)
F1 = {BC à D}

Candidate keys = {BC}
BCNF = true

R2 = (B, C, A, E)
F2 = {A à B}

Candidate keys = {ACE}
BCNF = false (A à B)

A à B

R4 = (A, C, E)
F4 = {} [[only trivial]]

Candidate keys = {ACE}
BCNF = true

Dependency preservation ???
We can check:

BC à D (R1), A à B (R3),
Dependency-preserving
decomposition

A à BC

R = (A, B, C, D, E, H)
F = {A à BC, E à HA}
Candidate keys = {DE}

BCNF = Violated by {A à BC} etc…

R1 = (A, B, C)
F1 = {A à BC}

Candidate keys = {A}
BCNF = true

R2 = (A, D, E, H)
F2 = {E à HA}

Candidate keys = {DE}
BCNF = false (E à HA)

E à HA

R3 = (E, H, A)
F3 = {E à HA}

Candidate keys = {E}
BCNF = true

R4 = (ED)
F4 = {} [[only trivial]]
Candidate keys = {DE}

BCNF = true

Dependency preservation ???
We can check:

A à BC (R1), E à HA (R3),
Dependency-preserving
decomposition

} Mechanisms and definitions to work with FDs

◦ Closures, candidate keys, canonical covers etc…

◦ Armstrong axioms

} Decompositions
◦ Loss-less decompositions, Dependency-preserving decompositions

} BCNF
◦ How to achieve a BCNF schema

} BCNF may not preserve dependencies

} 3NF: Solves the above problem

} BCNF allows for redundancy

} 4NF: Solves the above problem

} R = (J, K, L}
} F = {JK ® L, L ® K }

} Two candidate keys = JK and JL

} R is not in BCNF

} Any decomposition of R will fail to preserve
JK ® L

} This implies that testing for JK ® L requires a join

} Not always possible to find a dependency-preserving
decomposition that is in BCNF.

} PTIME to determine if there exists a dependency-
preserving decomposition in BCNF
◦ in size of F

} NP-Hard to find one if it exists

} Better results exist if F satisfies certain properties

} Mechanisms and definitions to work with FDs

◦ Closures, candidate keys, canonical covers etc…

◦ Armstrong axioms

} Decompositions
◦ Loss-less decompositions, Dependency-preserving decompositions

} BCNF
◦ How to achieve a BCNF schema

} BCNF may not preserve dependencies

} 3NF: Solves the above problem

} BCNF allows for redundancy

} 4NF: Solves the above problem

} Definition: Prime attributes
An attribute that is contained in a candidate key for R

} Example 1:
◦ R = (A, B, C, D, E, H}, F = {A à BC, E à HA},
◦ Candidate keys = {ED}
◦ Prime attributes: D, E

} Example 2:
◦ R = (J, K, L), F = {JK à L, L à K},
◦ Candidate keys = {JL, JK}
◦ Prime attributes: J, K, L

} Observation/Intuition:
1. A key has no redundancy (is not repeated in a relation)
2. A prime attribute has limited redundancy

} Given a relation schema R, and a set of functional
dependencies F, if every FD, A à B, is either:

1. Trivial, or
2. A is a superkey of R, or
3. All attributes in (B – A) are prime

Then, R is in 3NF (3rd Normal Form)

} Why is 3NF good ?

} Why does redundancy arise ?
◦ Given a FD, A à B, if A is repeated (B – A) has to be repeated
1. If rule 1 is satisfied, (B – A) is empty, so not a problem.
2. If rule 2 is satisfied, then A can’t be repeated, so this doesn’t

happen either
3. If not, rule 3 says (B – A) must contain only prime attributes

This limits the redundancy somewhat.

} So 3NF relaxes BCNF somewhat by allowing for some (hopefully
limited) redundancy

} Why ?
◦ There always exists a dependency-preserving lossless decomposition in 3NF.

} A synthesis algorithm

} Start with the canonical cover, and construct the 3NF
schema directly

} Homework assignment.

} Mechanisms and definitions to work with FDs

◦ Closures, candidate keys, canonical covers etc…

◦ Armstrong axioms

} Decompositions
◦ Loss-less decompositions, Dependency-preserving decompositions

} BCNF
◦ How to achieve a BCNF schema

} BCNF may not preserve dependencies

} 3NF: Solves the above problem

} BCNF allows for redundancy

} 4NF: Solves the above problem

MovieTitle MovieYear StarName Address

Star wars 1977 Harrison Ford Address 1, LA
Star wars 1977 Harrison Ford Address 2, FL
Indiana Jones 198x Harrison Ford Address 1, LA
Indiana Jones 198x Harrison Ford Address 2, FL

Witness 19xx Harrison Ford Address 1, LA

Witness 19xx Harrison Ford Address 2, FL

… … … …

Lot of redundancy

FDs ? No non-trivial FDs.

So the schema is trivially in BCNF (and 3NF)

What went wrong ?

} The redundancy is because of multi-valued dependencies
} Denoted:

starname ®® address
starname ®® movietitle, movieyear

} Should not happen if the schema is constructed from an E/R
diagram

} Functional dependencies are a special case of multi-valued
dependencies

} Mechanisms and definitions to work with FDs

◦ Closures, candidate keys, canonical covers etc…

◦ Armstrong axioms

} Decompositions
◦ Loss-less decompositions, Dependency-preserving decompositions

} BCNF
◦ How to achieve a BCNF schema

} BCNF may not preserve dependencies

} 3NF: Solves the above problem

} BCNF allows for redundancy

} 4NF: Solves the above problem

} Similar to BCNF, except with MVDs instead of FDs.

} Given a relation schema R, and a set of multi-valued
dependencies F, if every MVD, A àà B, is either:

1. Trivial, or
2. A is a superkey of R

Then, R is in 4NF (4th Normal Form)

} 4NF à BCNF à 3NF à 2NF à 1NF:
◦ If a schema is in 4NF, it is in BCNF.
◦ If a schema is in BCNF, it is in 3NF.

} Other way round is untrue.

3NF BCNF 4NF

Eliminates redundancy
because of FD’s

Mostly Yes Yes

Eliminates redundancy
because of MVD’s

No No Yes

Preserves FDs Yes. Maybe Maybe

Preserves MVDs Maybe Maybe Maybe

4NF is typically desired and achieved.
A good E/R diagram won’t generate non-4NF relations at all

Choice between 3NF and BCNF is up to the designer

} Three ways to come up with a schema

1. Using E/R diagram
◦ If good, then little normalization is needed
◦ Tends to generate 4NF designs

2. A universal relation R that contains all attributes.
◦ Called universal relation approach
◦ Note that MVDs will be needed in this case

3. An ad hoc schema that is then normalized
◦ MVDs may be needed in this case

} What about 1st and 2nd normal forms ?
} 1NF:
◦ Essentially says that no set-valued attributes allowed
◦ Formally, a domain is called atomic if the elements of the

domain are considered indivisible
◦ A schema is in 1NF if the domains of all attributes are atomic
◦ We assumed 1NF throughout the discussion
� Non 1NF is just not a good idea

} 2NF:
◦ Mainly historic interest
◦ See Exercise 7.15 in the book

} We would like our relation schemas to:
◦ Not allow potential redundancy because of FDs or MVDs
◦ Be dependency-preserving:
� Make it easy to check for dependencies
� Since they are a form of integrity constraints

} Functional Dependencies/Multi-valued Dependencies
◦ Domain knowledge about the data properties

} Normal forms
◦ Defines the rules that schemas must follow
◦ 4NF is preferred, but 3NF is sometimes used instead

} Denormalization
◦ After doing the normalization, we may have too many tables
◦ We may denormalize for performance reasons
� Too many tables à too many joins during queries
◦ A better option is to use views instead
� So if a specific set of tables is joined often, create a view on the join

} More advanced normal forms
◦ project-join normal form (PJNF or 5NF)
◦ domain-key normal form
◦ Rarely used in practice

} Wrap up Normalization

} Projects
◦ Will start using ELMS for announcements
◦ Regrading etc.

} Midterm 1 on Wednesday: Questions?

} Next topic:
◦ How to ”execute” an SQL Query?
◦ Today: General background and alternatives

} All data was typically in hard disks or arrays of hard disks
} RAM (Memory) was never enough
◦ So always had to worry about what was in memory vs not

} Almost no real “distributed” execution
◦ Different from “parallel”, i.e., on co-located clusters of

computers

} Relatively well-understood use cases
◦ Report generation
◦ Interactive data analysis and exploration
◦ Supporting transactions

lock
manager
processlock tablelog buffer

shared
memory

database
 writer
process

log writer
process

checkpoint
process

process
monitor
process

server
process

server
process

user
process

user
process

server
process

user
process

ODBC JDBC

log disks data disks

query plan cache

buffer pool

From Chapter 20

lock
manager
processlock tablelog buffer

shared
memory

database
 writer
process

log writer
process

checkpoint
process

process
monitor
process

server
process

server
process

user
process

user
process

server
process

user
process

ODBC JDBC

log disks data disks

query plan cache

buffer pool

Clients may be anywhere – e.g., ATMs,
desktops, laptops, web apps etc.

Talk to the database using standard protocols
like JDBC/ODBC, SOAP, or REST (today), or

proprietary protocols

Typical components in a database system:
some for queries, some for transactions

Maybe on a single physical computer or a
cluster connected by a fast network

Data Storage Systems:
(1) Punch cards (long time ago)
(2) Hard disks (still prevalent)
(3) SSDs

Need “redundancy” and “fault-tolerance”
Data once stored should always be there

RAID = Redundant Array of Independent
Disks

Some sort of load balancer
or intake mechanism

} Much more diversity in the architectures that we see
◦ More modern hardware architectures

� Massively parallel computers
� SSDs
� Massive amounts of RAM – often don’t need to worry about data fitting in memory
� Much faster networks, even over a wide area
� Virtualization and Containerization
� Cloud Computing

◦ As a result: Data and execution typically distributed all over the place

} Much more diversity in data processing applications
◦ Much more non-relational data (images, text, video)
◦ Data Analytics/Machine learning more common use-cases

} Much more diversity in “data models”
◦ Document data models (JSON, XML), Key-value data model, Graph data model, RDF

From: https://blogs.oracle.com/timesten/the-evolution-of-db-
architectures

(Oracle-focused)

https://blogs.oracle.com/timesten/the-evolution-of-db-architectures

Data Warehouses
For: Large-scale data processing (TBs to PBs)
Parallel architectures (lots of co-located computers)
SQL and Reporting
No transactions

In-memory OLTP (on-line transaction processing)
For: Extremely fast transactions
Many-core or parallel architectures
Very limited SQL – mostly focused on “writes”
Typically assume data fits in memory across servers

Highly available, distributed OLTP
For: Distributed scenarios where clients are all over the world
Focus on “consistency” – how to make sure all users see the same
data
Limited SQL – mostly focused on “writes”
Considerations of memory vs disk less important

Extract-Transform-Load
Systems, or Map-Reduce, or Big
Data Frameworks

For: Large-scale, “ad hoc” data analysis

Mix of parallel and distributed architectures
Data usually coming from many different
sources
Mix of SQL, Machine Learning, and ad hoc
tasks (e.g., do image analysis, followed by
SQL)

AWS Glue

Apache Spark

} Key takeaway: Modern data architectures are a mess
◦ We haven’t talked about NoSQL (MongoDB, etc.), Machine Learning, “Streaming”…

} Fundamentals haven’t changed that much though
◦ We are still either:

� Going from some “input datasets” to an “output dataset” (queries/analytics)
� Modifying data (transactions)

◦ SQL is still very common, albeit often disguised
� Spark RDD operations map nicely to SQL joins and aggregates (unified now)
� MongoDB lookups, filters, and aggregates map to joins, selects, and aggregates in SQL

} But “performance trade-offs” are all over the place now
◦ 30 years ago, we worried a lot about hard disks and things fitting in memory
◦ Today, focus more on networks

} Focus has shifted to other aspects of data processing pipelines
◦ Analytics/Machine learning, data cleaning, statistics

SQL ”Query Plan”

Apache Hive ”Query Plan”
(Hive is an SQL layer on top of Hadoop)

Machine Learning Pipeline

Data Preparation and Visualization Pipeline

} Many similarities across different ways to process and analyze data
} At its simplest:

Dataset 1

Dataset 2

Dataset 3

Dataset 4

Dataset 5

Binary
Operation 1

Unary
Operation 1

Binary
Operation 2

Ternary
Operation 1

Unary
Operation 1

Output
Dataset 1

Maybe Tables in an RDBMS, Files in HDFS,
or Images in a key-value store

Maybe Joins, or Aggregates, or Machine
Learning Tasks, or Data Cleaning Tasks,

or…

Maybe Another RDBMS Table, a New File,
or a Machine Learning Model

} Many similarities across different ways to process and analyze data

} Some considerations that we see repeated:
◦ Are there multiple ways to accomplish the goals?

� i.e., are there multiple pipelines or SQL Query Plans that will accomplish the same task
◦ How to “enumerate” all of them?

� i.e., how to automatically come up with all the different options?
◦ How to decide which is the ”best”?

� Ideally based on some consideration of total cost (e.g., total CPU time)

◦ How to ”find” the best plan?
� Called “query optimization” in databases

} RDBMSs have been doing this for 4-5 decades now
◦ The classic paper on SQL query optimization is from 1979

� Outlined the approach still in use today

} Same ideas re-discovered repeatedly in other contexts (e.g., Hadoop)

} We have to limit the scope drastically

} Focus on:
◦ Single-server Relational Databases
◦ Assume hard disks are still important and memory is limited
◦ Go deep into different ways to execute queries, and find the best queries

} Will briefly discuss:
◦ Parallel architectures and query processing there
◦ Map-reduce architectures and considerations there-in

} Most of the key concepts valid in modern databases (including
NoSQL) and Big Data Frameworks

