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l Week 1 (March 30 – April 2):
l File Organization and Overview of Indexes
l B+-Trees
l Hashing
l Miscellaneous topics in Indexes

l Week 2: Query Processing
l Week 3: Transactions 1
l Week 4: Transactions 2
l Week 5: Parallel Database and MapReduce

Spring 2020 – Online Instruction Plan



l Book Chapters
l 11.3

l Key topics:
l B+-Trees as a multi-level index, and basic properties
l How to search in a B+-Tree?
l How to update B+-Tree when a new tuple in inserted 

in the relation? 
l Key challenge: keeping the index “balanced” and all the 

pages “sufficiently full”
l How to handle a delete from the underlying relation?

l Same key challenge

B+-Trees
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Figure 11.9 B+-tree for instructor file (n = 4).

Observe that the height of this tree is less than that of the previous tree, which
had n = 4.

These examples of B+-trees are all balanced. That is, the length of every path
from the root to a leaf node is the same. This property is a requirement for a B+-
tree. Indeed, the “B” in B+-tree stands for “balanced.” It is the balance property of
B+-trees that ensures good performance for lookup, insertion, and deletion.

11.3.2 Queries on B+-Trees

Let us consider how we process queries on a B+-tree. Suppose that we wish to
find records with a search-key value of V. Figure 11.11 presents pseudocode for
a function find() to carry out this task.

Intuitively, the function starts at the root of the tree, and traverses the tree
down until it reaches a leaf node that would contain the specified value if it exists
in the tree. Specifically, starting with the root as the current node, the function
repeats the following steps until a leaf node is reached. First, the current node
is examined, looking for the smallest i such that search-key value Ki is greater

Brandt CrickCalifieri Einstein El Said Gold Katz Kim Mozart Singh Srinivasan Wu

El Said Mozart

Figure 11.10 B+-tree for instructor file with n = 6.

Index Disk Blocks



B+-Tree Node Structure

l Typical node

l Ki are the search-key values 
l Pi are pointers to children (for non-leaf nodes) or pointers to 

records or buckets of records (for leaf nodes).

l The search-keys in a node are ordered 
K1 < K2 < K3 < . . . < Kn–1



Properties of B+-Trees

l It is balanced
l Every path from the root to a leaf is same length

l Leaf nodes (at the bottom)
l P1 contains the pointers to tuple(s) with key K1
l …
l Pn is a pointer to the next leaf node
l Must contain at least n/2 entries



Properties

l Interior nodes

l All tuples in the subtree pointed to by P1, have search key < K1

l To find a tuple with key K1’ < K1, follow P1

l …

l Finally, search keys in the tuples contained in the subtree pointed 
to by Pn, are all larger than Kn-1

l Must contain at least n/2 entries (unless root)



B+-Trees - Searching

l How to search ?
l Follow the pointers

l Logarithmic
l logB/2(N), where B = Number of entries per block
l B is also called the order of the B+-Tree Index

l Typically 100 or so

l If a relation contains1,000,000,000 entries, takes only 4 
random accesses

l The top levels are typically in memory

l So only requires 1 or 2 random accesses per request
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If this were a “primary” index, then not all ”keys” are present in the index



Tuple Insertion

l Find the leaf node where the search key should go
l If already present 

l Insert record in the file. Update the bucket if necessary
l This would be needed for secondary indexes

l If not present
l Insert the record in the file
l Adjust the index

l Add a new (Ki, Pi) pair to the leaf node 
l Recall the keys in the nodes are sorted

l What if there is no space ?



Tuple Insertion

l Splitting a node
l Node has too many key-pointer pairs

l Needs to store n, only has space for n-1

l Split the node into two nodes
l Put about half in each

l Recursively go up the tree
l May result in splitting all the way to the root
l In fact, may end up adding a level to the tree

l Pseudocode in the book !!
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Adams Califieri CrickBrandt

Figure 11.12 Split of leaf node on insertion of “Adams”

11.3.3.1 Insertion

We now consider an example of insertion in which a node must be split. Assume
that a record is inserted on the instructor relation, with the name value being
Adams. We then need to insert an entry for “Adams” into the B+-tree of Figure 11.9.
Using the algorithm for lookup, we find that “Adams” should appear in the leaf
node containing “Brandt”, “Califieri”, and “Crick.” There is no room in this leaf to
insert the search-key value “Adams.” Therefore, the node is split into two nodes.
Figure 11.12 shows the two leaf nodes that result from the split of the leaf node on
inserting “Adams”. The search-key values “Adams” and “Brandt” are in one leaf,
and “Califieri” and “Crick” are in the other. In general, we take the n search-key
values (the n− 1 values in the leaf node plus the value being inserted), and put
the first ⌈n/2⌉ in the existing node and the remaining values in a newly created
node.

Having split a leaf node, we must insert the new leaf node into the B+-tree
structure. In our example, the new node has “Califieri” as its smallest search-key
value. We need to insert an entry with this search-key value, and a pointer to the
new node, into the parent of the leaf node that was split. The B+-tree of Figure
11.13 shows the result of the insertion. It was possible to perform this insertion
with no further node split, because there was room in the parent node for the new
entry. If there were no room, the parent would have had to be split, requiring an
entry to be added to its parent. In the worst case, all nodes along the path to the
root must be split. If the root itself is split, the entire tree becomes deeper.

Splitting of a nonleaf node is a little different from splitting of a leaf node.
Figure 11.14 shows the result of inserting a record with search key “Lamport” into
the tree shown in Figure 11.13. The leaf node in which “Lamport” is to be inserted
already has entries “Gold”, “Katz”, and “Kim”, and as a result the leaf node has
to be split. The new right-hand-side node resulting from the split contains the
search-key values “Kim” and “Lamport”. An entry (Kim, n1) must then be added
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Figure 11.13 Insertion of “Adams” into the B+-tree of Figure 11.9.
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Figure 11.14 Insertion of “Lamport” into the B+-tree of Figure 11.13.

to the parent node, where n1 is a pointer to the new node, However, there is no
space in the parent node to add a new entry, and the parent node has to be split.
To do so, the parent node is conceptually expanded temporarily, the entry added,
and the overfull node is then immediately split.

When an overfull nonleaf node is split, the child pointers are divided among
the original and the newly created nodes; in our example, the original node is
left with the first three pointers, and the newly created node to the right gets
the remaining two pointers. The search key values are, however, handled a little
differently. The search key values that lie between the pointers moved to the right
node (in our example, the value “Kim”) are moved along with the pointers, while
those that lie between the pointers that stay on the left (in our example, “Califieri”
and “Einstein”) remain undisturbed.

However, the search key value that lies between the pointers that stay on the
left, and the pointers that move to the right node is treated differently. In our
example, the search key value “Gold” lies between the three pointers that went to
the left node, and the two pointers that went to the right node. The value “Gold”
is not added to either of the split nodes. Instead, an entry (Gold, n2) is added to
the parent node, where n2 is a pointer to the newly created node that resulted
from the split. In this case, the parent node is the root, and it has enough space
for the new entry.

The general technique for insertion into a B+-tree is to determine the leaf node
l into which insertion must occur. If a split results, insert the new node into the
parent of node l. If this insertion causes a split, proceed recursively up the tree
until either an insertion does not cause a split or a new root is created.

Figure 11.15 outlines the insertion algorithm in pseudocode. The procedure
insert inserts a key-value pointer pair into the index, using two subsidiary
procedures insert in leaf and insert in parent. In the pseudocode, L , N, P
and T denote pointers to nodes, with L being used to denote a leaf node. L .Ki and
L .Pi denote the ith value and the ith pointer in node L , respectively; T.Ki and
T.Pi are used similarly. The pseudocode also makes use of the function parent(N)
to find the parent of a node N. We can compute a list of nodes in the path from
the root to the leaf while initially finding the leaf node, and can use it later to find
the parent of any node in the path efficiently.

The procedure insert in parent takes as parameters N, K ′, N′, where node
N was split into N and N′, with K ′ being the least value in N′. The procedure

B+-Trees:  Insertion
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Updates on B+-Trees: Deletion
l Find the record, delete it.
l Remove the corresponding (search-key, pointer) pair from a leaf 

node
l Note that there might be another tuple with the same search-key
l In that case, this is not needed

l Issue:
l The leaf node now may contain too few entries

l Why do we care ?
l Solution:

1. See if you can borrow some entries from a sibling
2. If all the siblings are also just barely full, then merge (opposite of split)

l May end up merging all the way to the root
l In fact, may reduce the height of the tree by one



Examples of B+-Tree Deletion
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Figure 11.16 Deletion of “Srinivasan” from the B+-tree of Figure 11.13.

modifies the parent of N to record the split. The procedures insert into index
and insert in parent use a temporary area of memory T to store the contents
of a node being split. The procedures can be modified to copy data from the
node being split directly to the newly created node, reducing the time required
for copying data. However, the use of the temporary space T simplifies the
procedures.

11.3.3.2 Deletion

We now consider deletions that cause tree nodes to contain too few pointers. First,
let us delete “Srinivasan” from the B+-tree of Figure 11.13. The resulting B+-tree
appears in Figure 11.16. We now consider how the deletion is performed. We first
locate the entry for “Srinivasan” by using our lookup algorithm. When we delete
the entry for “Srinivasan” from its leaf node, the node is left with only one entry,
“Wu”. Since, in our example, n = 4 and 1 < ⌈(n − 1)/2⌉, we must either merge
the node with a sibling node, or redistribute the entries between the nodes, to
ensure that each node is at least half-full. In our example, the underfull node with
the entry for “Wu” can be merged with its left sibling node. We merge the nodes
by moving the entries from both the nodes into the left sibling, and deleting the
now empty right sibling. Once the node is deleted, we must also delete the entry
in the parent node that pointed to the just deleted node.

In our example, the entry to be deleted is (Srinivasan, n3), where n3 is a
pointer to the leaf containing “Srinivasan”. (In this case the entry to be deleted
in the nonleaf node happens to be the same value as that deleted from the leaf;
that would not be the case for most deletions.) After deleting the above entry,
the parent node, which had a search key value “Srinivasan” and two pointers,
now has one pointer (the leftmost pointer in the node) and no search-key values.
Since 1 < ⌈n/2⌉ for n = 4, the parent node is underfull. (For larger n, a node that
becomes underfull would still have some values as well as pointers.)

In this case, we look at a sibling node; in our example, the only sibling is
the nonleaf node containing the search keys “Califieri”, “Einstein”, and “Gold”.
If possible, we try to coalesce the node with its sibling. In this case, coalescing is
not possible, since the node and its sibling together have five pointers, against a
maximum of four. The solution in this case is to redistribute the pointers between
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Another B+Tree Insertion Example

INITIAL TREE

Next slides show the insertion of (125) into this tree
According to the Algorithm in Figure 12.13, Page 495



Another Example: INSERT (125)

Step 1: Split L to create L’

Insert the lowest value in L’ (130) upward into the parent P



Another Example: INSERT (125)

Step 2: Insert (130) into P by creating a temp node T



Another Example: INSERT (125)

Step 3: Create P’; distribute from T into P and P’

New P has only 1 key, but two pointers so it is OKAY.
This follows the last 4 lines of Figure 12.13 (note that “n” = 4)
K’’ = 130. Insert upward into the root 



Another Example: INSERT (125)

Step 4: Insert (130) into the parent (R); create R’

Once again following the insert_in_parent() procedure, K’’ = 1000



Another Example: INSERT (125)

Step 5: Create a new root



B+ Trees in Practice

l Typical order: 100.  Typical fill-factor: 67%.
l average fanout = 133

l Typical capacities:
l Height 3: 1333 =     2,352,637 entries
l Height 4: 1334 = 312,900,700 entries

l Can often hold top levels in buffer pool:
l Level 1 =           1 page  =     8 Kbytes
l Level 2 =      133 pages =     1 Mbyte
l Level 3 = 17,689 pages = 133 MBytes       



B+ Trees: Summary

l Searching:
l logd(n) – Where d is the order, and n is the number of entries

l Insertion:
l Find the leaf to insert into
l If full, split the node, and adjust index accordingly
l Similar cost as searching

l Deletion
l Find the leaf node
l Delete
l May not remain half-full; must adjust the index accordingly


