# CMSC424: Database Design

#### Instructor: Amol Deshpande amol@cs.umd.edu



#### **Spring 2020 – Online Instruction Plan**

Modified to swap the last two projects

- Week 1: File Organization and Indexes
- Week 2: Query Processing
- Week 3: Query Optimization; Architectures/Parallel 1
- Week 4: Parallel Databases + MapReduce; Transactions 1
- Week 5: Transactions 2

#### **Spring 2020 – Online Instruction Plan**

- Week 1: File Organization and Indexes
- Week 2: Query Processing
- Week 3 (Homework Due April 17, Noon)
  - Query Optimization 1: Overview, Statistics
  - Query Optimization 2: Equivalences, Search Algorithms
  - Architectures/Parallel Databases Introduction
- Week 4: Parallel Databases; Mapreduce; Transactions 1
  - Map-reduce and Apache Spark (will post early for Project 5)
- Week 5: Transactions 2



#### **Getting Deeper into Query Processing**



Resolve the references, Syntax errors etc.

Syntax errors etc. Converts the query to an internal format *relational algebra like* 

Find the *best* way to evaluate the query Which index to use ? What join method to use ?

Read the data from the files Do the query processing *joins, selections, aggregates* 



- Book Chapters
  - 13.1, 13.3
- Key topics:
  - Why query optimization is so important?
  - How to estimate the sizes of "intermediate results"
  - Histograms for estimating sizes of selections
  - Brief discussion of intermediate sizes of other operators





- Overview
- Statistics Estimation
- Transformation of Relational Expressions
- Optimization Algorithms

- Why?
  - Many different ways of executing a given query
  - Huge differences in cost
- Example:
  - select \* from person where ssn = "123"
  - Size of *person* = 1GB
  - Sequential Scan:
    - Takes 1GB / (20MB/s) = 50s
  - Use an index on SSN (assuming one exists):
    - Approx 4 Random I/Os = 40ms





- Many choices
  - Using indexes or not, which join method (hash, vs merge, vs NL)
  - What join order ?
    - Given a join query on R, S, T, should I join R with S first, or S with T first ?
- This is an optimization problem
  - Similar to say traveling salesman problem
  - Number of different choices is very very large
  - Step 1: Figuring out the *solution space*
  - Step 2: Finding algorithms/heuristics to search through the solution space

- Equivalent relational expressions
  - Drawn as a tree
  - List the operations and the order





- Execution plans
  - Evaluation expressions annotated with the methods used







- Steps:
  - Generate all possible execution plans for the query
  - Figure out the cost for each of them
  - Choose the best

- Not done exactly as listed above
  - Too many different execution plans for that
  - Typically interleave all of these into a single efficient search algorithm



- Steps:
  - Generate all possible execution plans for the query
    - First generate all equivalent expressions
    - Then consider all annotations for the operations
  - Figure out the cost for each of them
    - Compute cost for each operation
      - Using the formulas discussed before
      - One problem: How do we know the number of result tuples for,

say,  $\sigma_{\textit{balance}<2500}(account)$ 

- Add them !
- Choose the best



- Introduction
- Statistics Estimation
- Transformation of Relational Expressions
- Optimization Algorithms

#### **Cost estimation**

• Computing operator costs requires information like:

- Primary key ?
- Sorted or not, which attribute
  - So we can decide whether need to sort again
- How many tuples in the relation, how many blocks?
- RAID ?? Which one ?
  - Read/write costs are quite different
- How many tuples match a predicate like "age > 40"?
  - E.g. Need to know how many index pages need to be read
- Intermediate result sizes
  - E.g. (R JOIN S) is input to another join operation need to know if it fits in memory
- And so on...



#### **Cost estimation**

- Some information is static and is maintained in the metadata
  - Primary key ?
  - Sorted or not, which attribute
    - So we can decide whether need to sort again
  - How many tuples in the relation, how many blocks ?
  - RAID ?? Which one ?
    - Read/write costs are quite different
- Typically kept in some tables in the database
  - "all\_tab\_columns" in Oracle
- Most systems have commands for updating them



#### **Cost estimation**

- However, others need to be estimated somehow
  - How many tuples match a predicate like "age > 40" ?
    - E.g. Need to know how many index pages need to be read
  - Intermediate result sizes
- The problem variously called:
  - "intermediate result size estimation"
  - "selectivity estimation"
- Very important to estimate reasonably well
  - e.g. consider "select \* from R where zipcode = 20742"
  - We estimate that there are 10 matches, and choose to use a secondary index (remember: random I/Os)
  - Turns out there are 10000 matches
  - Using a secondary index very bad idea
  - Optimizer also often choose Nested-loop joins if one relation very small... underestimation can result in very bad



### **Selectivity Estimation**



- Basic idea:
  - Maintain some information about the tables
    - More information → more accurate estimation
    - More information  $\rightarrow$  higher storage cost, higher update cost
  - Make uniformity and randomness assumptions to fill in the gaps
- Example:
  - For a relation "people", we keep:
    - Total number of tuples = 100,000
    - Distinct "zipcode" values that appear in it = 100
  - Given a query: "zipcode = 20742"
    - We estimated the number of matching tuples as: 100,000/100 = 1000
  - What if I wanted more accurate information ?
    - Keep histograms...

- A condensed, approximate version of the "frequency distribution"
  - Divide the range of the attribute value in "buckets"
  - For each bucket, keep the total count
  - Assume uniformity within a bucket



- Given a query: zipcode = " 20742"
  - Find the bucket (Number 3)
  - Say the associated cound = 45000
  - Assume uniform distribution within the bucket: 45,000/200 = 225





- What if the ranges are typically not full ?
  - ie., only a few of the zipcodes are actually in use?
- With each bucket, also keep the number of zipcodes that are valid
- Now the estimate would be: 45,000/80 = 562.50
- More Information → Better estimation





- Very widely used in practice
  - One-dimensional histograms kept on almost all columns of interest
    - ie., the columns that are commonly referenced in queries
  - Sometimes: multi-dimensional histograms also make sense
    - Less commonly used as of now
- Two common types of histograms:
  - Equi-depth
    - The attribute value range partitioned such that each bucket contains about the same number of tuples
  - Equi-width
    - The attribute value range partitioned in equal-sized buckets
  - VOptimal histograms
    - No such restrictions
    - More accurate, but harder to use or update

#### Next...



- Estimating sizes of the results of various operations
- Guiding principle:
  - Use all the information available
  - Make uniformity and randomness assumptions otherwise
  - Many formulas, but not very complicated...
    - In most cases, the first thing you think of

#### **Basic statistics**



- Basic information stored for all relations
  - $n_r$ : number of tuples in a relation r.
  - *b<sub>r</sub>*: number of blocks containing tuples of *r*.
  - $I_r$ : size of a tuple of *r*.
  - *f<sub>r</sub>*: blocking factor of *r* i.e., the number of tuples of *r* that fit into one block.
  - V(A, r): number of distinct values that appear in r for attribute A; same as the size of  $\prod_{A}(r)$ .
  - MAX(A, r): th maximum value of A that appears in r
  - *MIN(A, r)*
  - If tuples of *r* are stored together physically in a file, then:

$$b_{r} = \left[\frac{n_{r}}{f_{r}}\right]$$

#### **Selection Size Estimation**

- $\sigma_{A=v}(r)$ 
  - $n_r / V(A,r)$  : number of records that will satisfy the selection
  - Equality condition on a key attribute: size estimate = 1
- $\sigma_{A \le V}(r)$  (case of  $\sigma_{A \ge V}(r)$  is symmetric)
  - Let c denote the estimated number of tuples satisfying the condition.
  - If min(A,r) and max(A,r) are available in catalog
    - c = 0 if v < min(A,r)</li>

• 
$$\mathbf{C} = n_r \cdot \frac{v - \min(A, r)}{\max(A, r) - \min(A, r)}$$

- If histograms available, can refine above estimate
- In absence of statistical information *c* is assumed to be  $n_r/2$ .



#### **Size Estimation of Complex Selections**

- **selectivity**( $\theta_i$ ) = the probability that a tuple in *r* satisfies  $\theta_i$ .
  - If  $s_i$  is the number of satisfying tuples in *r*, then selectivity  $(\theta_i) = s_i / n_r$ .
- Conjunction: σ<sub>θ1∧ θ2∧...∧θn</sub> (r). Assuming independence, estimate of tuples in the result is:

$$n_r * \frac{S_1 * S_2 * \dots * S_n}{n_r^n}$$

• **Disjunction**:  $\sigma_{\theta_{1} \vee \theta_{2} \vee \ldots \vee \theta_{n}}(r)$ . Estimated number of tuples:

$$n_r * \left( 1 - \left(1 - \frac{S_1}{n_r}\right) * \left(1 - \frac{S_2}{n_r}\right) * \dots * \left(1 - \frac{S_n}{n_r}\right) \right)$$

• **Negation:**  $\sigma_{\neg\theta}(r)$ . Estimated number of tuples:  $n_r - size(\sigma_{\theta}(r))$ 



#### Joins

- R JOIN S: R.a = S.a
  - |R| = 10,000; |S| = 5000
- CASE 1: *a* is key for S
  - Each tuple of R joins with exactly one tuple of S
  - So: |R JOIN S| = |R| = 10,000
  - Assumption: Referential integrity holds
  - What if there is a selection on R or S
    - Adjust accordingly
    - Say: S.b = 100, with selectivity 0.1
    - THEN: |R JOIN S| = |R| \* 0.1 = 100
- CASE 2: *a* is key for R
  - Similar



#### Joins

- R JOIN S: R.a = S.a
  - |R| = 10,000; |S| = 5000
- CASE 3: *a* is not a key for either
  - Reason with the distributions on a
  - Say: the domain of *a*: *V*(*A*, *R*) = 1000 (the number of distinct values *a* can take)
  - THEN, assuming uniformity
    - For each value of a
      - We have 10,000/100 = 100 tuples of R with that value of a
      - We have 5000/100 = 50 tuples of S with that value of a
      - All of these will join with each other, and produce 100 \*50 = 5000
    - So total number of results in the join:
      - 5000 \* 100 = 500000
  - We can improve the accuracy if we know the distributions on *a* better
    - Say using a histogram



#### **Other Operations**

- Projection:  $\prod_{A}(R)$ 
  - If no duplicate elimination, THEN  $|\prod_A(R)| = |R|$
  - If *distinct* used (duplicate elimination performed):  $|\prod_A(R)| = V(A, R)$
- Set operations:
  - Union ALL: |R ∪ S| = |R| + |S|
  - Intersect ALL: |R ∩ S| = min{|R|, |S|}
  - Except ALL: |R S| = |R| (a good upper bound)
  - Union, Intersection, Except (with duplicate elimination)
    - Somewhat more complex reasoning based on the frequency distributions etc...
- And so on ...

