CMSC424: Database Design

Instructor: Amol Deshpande amol@cs.umd.edu

Spring 2020 - Online Instruction Plan

Modified to swap the last two projects

- Week 1: File Organization and Indexes
- Week 2: Query Processing
- Week 3: Query Optimization; Architectures/Parallel 1
- Week 4: Parallel Databases + MapReduce; Transactions 1
- Week 5: Transactions 2

Spring 2020 - Online Instruction Plan

- Week 1: File Organization and Indexes
- Week 2: Query Processing
- Week 3 (Homework Due April 17, Noon)
- Query Optimization 1: Overview, Statistics
- Query Optimization 2: Equivalences, Search Algorithms
- Architectures/Parallel Databases Introduction
- Week 4: Parallel Databases; Mapreduce; Transactions 1
- Map-reduce and Apache Spark (will post early for Project 5)
- Week 5: Transactions 2

Getting Deeper into Query Processing

User
select * from R, S where ...

Resolve the references, Syntax errors etc.
Converts the query to an internal format relational algebra like

Find the best way to evaluate the query

Which index to use ?
What join method to use?

Read the data from the files Do the query processing
joins, selections, aggregates

Getting Deeper into Query Processing

Query Optimization

- Book Chapters
- 13.1, 13.3
- Key topics:
- Why query optimization is so important?
- How to estimate the sizes of "intermediate results"
- Histograms for estimating sizes of selections
- Brief discussion of intermediate sizes of other operators

Query Optimization

- Overview
- Statistics Estimation
- Transformation of Relational Expressions
- Optimization Algorithms

Query Optimization

- Why?
- Many different ways of executing a given query
- Huge differences in cost
- Example:
- select * from person where ssn = "123"
- Size of person = 1GB
- Sequential Scan:
- Takes 1GB / (20MB/s) = 50s
- Use an index on SSN (assuming one exists):
- Approx 4 Random I/Os = 40ms

Query Optimization

- Many choices
- Using indexes or not, which join method (hash, vs merge, vs NL)
- What join order?
- Given a join query on R, S, T, should I join R with S first, or S with T first?
- This is an optimization problem
- Similar to say traveling salesman problem
- Number of different choices is very very large
- Step 1: Figuring out the solution space
- Step 2: Finding algorithms/heuristics to search through the solution space

Query Optimization

- Equivalent relational expressions
- Drawn as a tree
- List the operations and the order

Query Optimization

- Execution plans
- Evaluation expressions annotated with the methods used

Query Optimization

- Steps:
- Generate all possible execution plans for the query
- Figure out the cost for each of them
- Choose the best
- Not done exactly as listed above
- Too many different execution plans for that
- Typically interleave all of these into a single efficient search algorithm

Query Optimization

- Steps:
- Generate all possible execution plans for the query
- First generate all equivalent expressions
- Then consider all annotations for the operations
- Figure out the cost for each of them
- Compute cost for each operation
- Using the formulas discussed before
- One problem: How do we know the number of result tuples for, say, $\sigma_{\text {balance }<2500}$ (account)
- Add them!
- Choose the best

Query Optimization

- Introduction
- Statistics Estimation
- Transformation of Relational Expressions
- Optimization Algorithms

Cost estimation

- Computing operator costs requires information like:
- Primary key?
- Sorted or not, which attribute
- So we can decide whether need to sort again
- How many tuples in the relation, how many blocks?
- RAID ?? Which one?
- Read/write costs are quite different
- How many tuples match a predicate like "age >40" ?
- E.g. Need to know how many index pages need to be read
- Intermediate result sizes
- E.g. (R JOIN S) is input to another join operation - need to know if it fits in memory
- And so on...

Cost estimation

- Some information is static and is maintained in the metadata
- Primary key?
- Sorted or not, which attribute
- So we can decide whether need to sort again
- How many tuples in the relation, how many blocks?
- RAID ?? Which one?
- Read/write costs are quite different
- Typically kept in some tables in the database - "all_tab_columns" in Oracle
- Most systems have commands for updating them

Cost estimation

- However, others need to be estimated somehow
- How many tuples match a predicate like "age >40" ?
- E.g. Need to know how many index pages need to be read
- Intermediate result sizes
- The problem variously called:
- "intermediate result size estimation"
- "selectivity estimation"
- Very important to estimate reasonably well
- e.g. consider "select * from R where zipcode $=20742$ "
- We estimate that there are 10 matches, and choose to use a secondary index (remember: random I/Os)
- Turns out there are 10000 matches
- Using a secondary index very bad idea
- Optimizer also often choose Nested-loop joins if one relation very small... underestimation can result in very bad

Selectivity Estimation

- Basic idea:
- Maintain some information about the tables
- More information \rightarrow more accurate estimation
- More information \rightarrow higher storage cost, higher update cost
- Make uniformity and randomness assumptions to fill in the gaps
- Example:
- For a relation "people", we keep:
- Total number of tuples = 100,000
- Distinct "zipcode" values that appear in it $=100$
- Given a query: "zipcode = 20742"
- We estimated the number of matching tuples as: 100,000/100 = 1000
- What if I wanted more accurate information ?
- Keep histograms...

Histograms

- A condensed, approximate version of the "frequency distribution"
- Divide the range of the attribute value in "buckets"
- For each bucket, keep the total count
- Assume uniformity within a bucket

Histograms

- Given a query: zipcode = " 20742"
- Find the bucket (Number 3)
- Say the associated cound $=45000$
- Assume uniform distribution within the bucket: $45,000 / 200=225$

Histograms

- What if the ranges are typically not full ?
- ie., only a few of the zipcodes are actually in use ?
- With each bucket, also keep the number of zipcodes that are valid
- Now the estimate would be: $45,000 / 80=562.50$
- More Information \rightarrow Better estimation

Histograms

- Very widely used in practice
- One-dimensional histograms kept on almost all columns of interest
- ie., the columns that are commonly referenced in queries
- Sometimes: multi-dimensional histograms also make sense
- Less commonly used as of now
- Two common types of histograms:
- Equi-depth
- The attribute value range partitioned such that each bucket contains about the same number of tuples
- Equi-width
- The attribute value range partitioned in equal-sized buckets
- VOptimal histograms
- No such restrictions
- More accurate, but harder to use or update

Next...

- Estimating sizes of the results of various operations
- Guiding principle:
- Use all the information available
- Make uniformity and randomness assumptions otherwise
- Many formulas, but not very complicated...
- In most cases, the first thing you think of

Basic statistics

- Basic information stored for all relations
- n_{r} : number of tuples in a relation r.
- b_{r} : number of blocks containing tuples of r.
- I_{r} : size of a tuple of r.
- f_{r} : blocking factor of r - i.e., the number of tuples of r that fit into one block.
- $V(A, r)$: number of distinct values that appear in r for attribute A; same as the size of $\prod_{A}(r)$.
- $\operatorname{MAX}(A, r)$: th maximum value of A that appears in r
- $\operatorname{MIN}(A, r)$
- If tuples of r are stored together physically in a file, then:

$$
b_{r}=\left\lceil\frac{n_{r}}{f_{r}}\right\rceil
$$

Selection Size Estimation

- $\sigma_{A=v}(r)$
- $n_{r} / V(A, r)$: number of records that will satisfy the selection
- Equality condition on a key attribute: size estimate $=1$
- $\sigma_{A \leq V}(r)$ (case of $\sigma_{A \geq V}(r)$ is symmetric)
- Let c denote the estimated number of tuples satisfying the condition.
- If $\min (A, r)$ and $\max (A, r)$ are available in catalog
- $c=0$ if $v<\min (A, r)$
- $\mathrm{C}=n_{r} \cdot \frac{v-\min (A, r)}{\max (A, r)-\min (A, r)}$
- If histograms available, can refine above estimate
- In absence of statistical information c is assumed to be $n_{r} / 2$.

Size Estimation of Complex Selections

- selectivity $\left(\theta_{i}\right)=$ the probability that a tuple in r satisfies θ_{i}.
- If s_{i} is the number of satisfying tuples in r, then selectivity $\left(\theta_{i}\right)=s_{i} / n_{r}$.
- Conjunction: $\sigma_{\theta 1 \wedge \theta 2 \wedge \ldots \wedge \theta n}(r)$. Assuming independence, estimate of tuples in the result is:

$$
n_{r} * \frac{s_{1} * s_{2} * \ldots * s_{n}}{n_{r}^{n}}
$$

- Disjunction: $\sigma_{\theta 1 v} \theta 2 \vee \ldots \vee \theta n(r)$. Estimated number of tuples:

$$
n_{r} *\left(1-\left(1-\frac{s_{1}}{n_{r}}\right) *\left(1-\frac{s_{2}}{n_{r}}\right) * \ldots *\left(1-\frac{s_{n}}{n_{r}}\right)\right)
$$

- Negation: $\sigma_{\neg \theta}(r)$. Estimated number of tuples: $n_{r}-\operatorname{size}\left(\sigma_{\theta}(r)\right)$

Joins

- R JOIN S: R.a = S.a
- $|R|=10,000 ;|S|=5000$
- CASE 1: a is key for S
- Each tuple of R joins with exactly one tuple of S
- So: \mid R JOIN S| = |R| = 10,000
- Assumption: Referential integrity holds
- What if there is a selection on R or S
- Adjust accordingly
- Say: S.b = 100, with selectivity 0.1
- THEN: $\mid \mathrm{R}$ JOIN S| $=|\mathrm{R}|$ * $0.1=100$
- CASE 2: a is key for R
- Similar

Joins

- R JOIN S: R.a = S.a
- $|R|=10,000 ;|S|=5000$
- CASE 3: a is not a key for either
- Reason with the distributions on a
- Say: the domain of a: $V(A, R)=1000$ (the number of distinct values a can take)
- THEN, assuming uniformity
- For each value of a
- We have $10,000 / 100=100$ tuples of R with that value of a
- We have $5000 / 100=50$ tuples of S with that value of a
- All of these will join with each other, and produce $100 * 50=5000$
- So total number of results in the join:
- 5000 * $100=500000$
- We can improve the accuracy if we know the distributions on a better
- Say using a histogram

Other Operations

- Projection: $\Pi_{A}(R)$
- If no duplicate elimination, $\operatorname{THEN}\left|\Pi_{A}(R)\right|=|\mathrm{R}|$
- If distinct used (duplicate elimination performed): $\left|\Pi_{A}(R)\right|=V(A, R)$
- Set operations:
- Union ALL: $|\mathrm{R} \cup \mathrm{S}|=|\mathrm{R}|+|\mathrm{S}|$
- Intersect ALL: |R $\cap \mathrm{S} \mid=\min \{|\mathrm{R}|,|\mathrm{S}|\}$
- Except ALL: $|\mathrm{R}-\mathrm{S}|=|\mathrm{R}| \quad$ (a good upper bound)
- Union, Intersection, Except (with duplicate elimination)
- Somewhat more complex reasoning based on the frequency distributions etc...
- And so on ...

