
CMSC424: Database
Design

Instructor: Amol Deshpande
amol@cs.umd.edu

http://cs.umd.edu

l Week 1: File Organization and Indexes
l Week 2: Query Processing
l Week 3: Query Optimization; Architectures/Parallel 1
l Week 4: Parallel Databases + MapReduce;

Transactions 1
l Week 5: Transactions 2

Spring 2020 – Online Instruction Plan

Modified to swap the last two projects

l Week 1: File Organization and Indexes
l Week 2: Query Processing
l Week 3 (Homework Due April 17, Noon)

l Query Optimization 1: Overview, Statistics
l Query Optimization 2: Equivalences, Search Algorithms
l Architectures/Parallel Databases Introduction

l Week 4: Parallel Databases; Mapreduce; Transactions 1
l Map-reduce and Apache Spark (will post early for Project 5)

l Week 5: Transactions 2

Spring 2020 – Online Instruction Plan

Getting Deeper into Query Processing
User

select *
from R, S
where …

R, B+Tree on R.a
S, Hash Index on S.a

…

Results

Query Parser

Resolve the references,
Syntax errors etc.
Converts the query to an
internal format

relational algebra like

Query Optimizer Find the best way to evaluate
the query

Which index to use ?
What join method to use ?
…

Query Processor

Read the data from the files
Do the query processing

joins, selections, aggregates
…

Getting Deeper into Query Processing

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

l Book Chapters
l 13.1, 13.3

l Key topics:
l Why query optimization is so important?
l How to estimate the sizes of “intermediate results”
l Histograms for estimating sizes of selections
l Brief discussion of intermediate sizes of other

operators

Query Optimization

Query Optimization

l Overview
l Statistics Estimation
l Transformation of Relational Expressions
l Optimization Algorithms

Query Optimization

l Why ?
l Many different ways of executing a given query
l Huge differences in cost

l Example:
l select * from person where ssn = “123”
l Size of person = 1GB
l Sequential Scan:

l Takes 1GB / (20MB/s) = 50s

l Use an index on SSN (assuming one exists):
l Approx 4 Random I/Os = 40ms

Query Optimization

l Many choices
l Using indexes or not, which join method (hash, vs merge, vs NL)
l What join order ?

l Given a join query on R, S, T, should I join R with S first, or S
with T first ?

l This is an optimization problem
l Similar to say traveling salesman problem

l Number of different choices is very very large
l Step 1: Figuring out the solution space
l Step 2: Finding algorithms/heuristics to search through the

solution space

Query Optimization

l Equivalent relational expressions
l Drawn as a tree
l List the operations and the order

Query Optimization

l Execution plans
l Evaluation expressions annotated with the methods used

Query Optimization

l Steps:
l Generate all possible execution plans for the query
l Figure out the cost for each of them
l Choose the best

l Not done exactly as listed above
l Too many different execution plans for that
l Typically interleave all of these into a single efficient search

algorithm

Query Optimization

l Steps:
l Generate all possible execution plans for the query

l First generate all equivalent expressions
l Then consider all annotations for the operations

l Figure out the cost for each of them
l Compute cost for each operation

§ Using the formulas discussed before
§ One problem: How do we know the number of result tuples for,

say,

l Add them !

l Choose the best

)(2500 accountbalance<s

Query Optimization

l Introduction
l Statistics Estimation
l Transformation of Relational Expressions
l Optimization Algorithms

Cost estimation

l Computing operator costs requires information like:
l Primary key ?
l Sorted or not, which attribute

l So we can decide whether need to sort again
l How many tuples in the relation, how many blocks ?
l RAID ?? Which one ?

l Read/write costs are quite different
l How many tuples match a predicate like “age > 40” ?

l E.g. Need to know how many index pages need to be read
l Intermediate result sizes

l E.g. (R JOIN S) is input to another join operation – need to know if it
fits in memory

l And so on…

Cost estimation

l Some information is static and is maintained in the
metadata
l Primary key ?
l Sorted or not, which attribute

l So we can decide whether need to sort again
l How many tuples in the relation, how many blocks ?
l RAID ?? Which one ?

l Read/write costs are quite different

l Typically kept in some tables in the database
l “all_tab_columns” in Oracle

l Most systems have commands for updating them

Cost estimation
l However, others need to be estimated somehow

l How many tuples match a predicate like “age > 40” ?
l E.g. Need to know how many index pages need to be read

l Intermediate result sizes
l The problem variously called:

l “intermediate result size estimation”
l “selectivity estimation”

l Very important to estimate reasonably well
l e.g. consider “select * from R where zipcode = 20742”
l We estimate that there are 10 matches, and choose to use a secondary

index (remember: random I/Os)
l Turns out there are 10000 matches
l Using a secondary index very bad idea
l Optimizer also often choose Nested-loop joins if one relation very

small… underestimation can result in very bad

Selectivity Estimation

l Basic idea:
l Maintain some information about the tables

l More information à more accurate estimation
l More information à higher storage cost, higher update cost

l Make uniformity and randomness assumptions to fill in the gaps

l Example:
l For a relation “people”, we keep:

l Total number of tuples = 100,000
l Distinct “zipcode” values that appear in it = 100

l Given a query: “zipcode = 20742”
l We estimated the number of matching tuples as: 100,000/100 = 1000

l What if I wanted more accurate information ?
l Keep histograms…

Histograms
l A condensed, approximate version of the “frequency distribution”

l Divide the range of the attribute value in “buckets”
l For each bucket, keep the total count
l Assume uniformity within a bucket

20000- 20200- 20400- 20600- 20800-
20199 20399 20599 20799 20999

50,000

40,000

30,000

20,000

10,000

Histograms
l Given a query: zipcode = “ 20742”

l Find the bucket (Number 3)
l Say the associated cound = 45000
l Assume uniform distribution within the bucket: 45,000/200 = 225

20000- 20200- 20400- 20600- 20800-
20199 20399 20599 20799 20999

50,000

40,000

30,000

20,000

10,000

Histograms
l What if the ranges are typically not full ?

l ie., only a few of the zipcodes are actually in use ?
l With each bucket, also keep the number of zipcodes that are valid
l Now the estimate would be: 45,000/80 = 562.50
l More Information à Better estimation

20000- 20200- 20400- 20600- 20800-
20199 20399 20599 20799 20999

50,000

40,000

30,000

20,000

10,000

130

42

67

80

40

Histograms

l Very widely used in practice
l One-dimensional histograms kept on almost all columns of interest

l ie., the columns that are commonly referenced in queries
l Sometimes: multi-dimensional histograms also make sense

l Less commonly used as of now

l Two common types of histograms:
l Equi-depth

l The attribute value range partitioned such that each bucket contains about the
same number of tuples

l Equi-width
l The attribute value range partitioned in equal-sized buckets

l VOptimal histograms
l No such restrictions
l More accurate, but harder to use or update

Next…

l Estimating sizes of the results of various operations
l Guiding principle:

l Use all the information available
l Make uniformity and randomness assumptions

otherwise
l Many formulas, but not very complicated…

l In most cases, the first thing you think of

Basic statistics

l Basic information stored for all relations
l nr: number of tuples in a relation r.
l br: number of blocks containing tuples of r.
l lr: size of a tuple of r.
l fr: blocking factor of r — i.e., the number of tuples of r that fit into

one block.
l V(A, r): number of distinct values that appear in r for attribute A;

same as the size of ÕA(r).
l MAX(A, r): th maximum value of A that appears in r
l MIN(A, r)
l If tuples of r are stored together physically in a file, then:

ú
ú
ú

ú

ù

ê
ê
ê

ê

é
=
rf
rnrb

Selection Size Estimation

l sA=v(r)
l nr / V(A,r) : number of records that will satisfy the selection
l Equality condition on a key attribute: size estimate = 1

l sA£V(r) (case of sA ³ V(r) is symmetric)
l Let c denote the estimated number of tuples satisfying the condition.
l If min(A,r) and max(A,r) are available in catalog

l c = 0 if v < min(A,r)

l c =

l If histograms available, can refine above estimate
l In absence of statistical information c is assumed to be nr / 2.

),min(),max(
),min(.
rArA

rAvnr -
-

Size Estimation of Complex Selections

l selectivity(qi) = the probability that a tuple in r satisfies qi .
l If si is the number of satisfying tuples in r, then selectivity (qi) = si /nr.

l Conjunction: sq1Ù q2Ù. . . Ù qn (r). Assuming independence, estimate of
tuples in the result is:

l Disjunction:sq1Ú q2 Ú. . . Ú qn (r). Estimated number of tuples:

l Negation: s¬q(r). Estimated number of tuples: nr – size(sq(r))

n
r

n
r n

sssn ***
*

 . . . 21

÷÷
ø

ö
çç
è

æ
-**-*--*)1(...)1()1(1 21

r

n

rr
r n

s
n
s

n
sn

Joins
l R JOIN S: R.a = S.a

l |R| = 10,000; |S| = 5000

l CASE 1: a is key for S
l Each tuple of R joins with exactly one tuple of S
l So: |R JOIN S| = |R| = 10,000
l Assumption: Referential integrity holds

l What if there is a selection on R or S
l Adjust accordingly
l Say: S.b = 100, with selectivity 0.1
l THEN: |R JOIN S| = |R| * 0.1 = 100

l CASE 2: a is key for R
l Similar

Joins
l R JOIN S: R.a = S.a

l |R| = 10,000; |S| = 5000

l CASE 3: a is not a key for either
l Reason with the distributions on a
l Say: the domain of a: V(A, R) = 1000 (the number of distinct values a can take)
l THEN, assuming uniformity

l For each value of a
§ We have 10,000/100 = 100 tuples of R with that value of a
§ We have 5000/100 = 50 tuples of S with that value of a
§ All of these will join with each other, and produce 100 *50 = 5000

l So total number of results in the join:
§ 5000 * 100 = 500000

l We can improve the accuracy if we know the distributions on a better
l Say using a histogram

Other Operations
l Projection: ÕA(R)

l If no duplicate elimination, THEN |ÕA(R)| = |R|
l If distinct used (duplicate elimination performed): |ÕA(R)| = V(A, R)

l Set operations:
l Union ALL: |R È S| = |R| + |S|
l Intersect ALL: |R Ç S| = min{|R|, |S|}
l Except ALL: |R – S| = |R| (a good upper bound)
l Union, Intersection, Except (with duplicate elimination)

l Somewhat more complex reasoning based on the frequency
distributions etc…

l And so on …

