
CMSC424: Database
Design

Instructor: Amol Deshpande
amol@cs.umd.edu

http://cs.umd.edu

l Week 1: File Organization and Indexes
l Week 2: Query Processing
l Week 3: Query Optimization; Architectures/Parallel 1
l Week 4: Parallel Databases + MapReduce;

Transactions 1
l Week 5: Transactions 2

Spring 2020 – Online Instruction Plan

Modified to swap the last two projects

l Week 1: File Organization and Indexes
l Week 2: Query Processing
l Week 3 (Homework Due April 17, Noon)

l Query Optimization 1: Overview, Statistics
l Query Optimization 2: Equivalences, Search Algorithms
l Architectures/Parallel Databases Introduction

l Week 4: Parallel Databases; Mapreduce; Transactions 1
l Map-reduce and Apache Spark (will post early for Project 5)

l Week 5: Transactions 2

Spring 2020 – Online Instruction Plan

Getting Deeper into Query Processing
User

select *
from R, S
where …

R, B+Tree on R.a
S, Hash Index on S.a

…

Results

Query Parser

Resolve the references,
Syntax errors etc.
Converts the query to an
internal format

relational algebra like

Query Optimizer Find the best way to evaluate
the query

Which index to use ?
What join method to use ?
…

Query Processor

Read the data from the files
Do the query processing

joins, selections, aggregates
…

Getting Deeper into Query Processing

query
output

query parser and
translator

evaluation engine

relational-algebra
expression

execution plan

optimizer

data statistics
about data

l Book Chapters
l 13.1, 13.2, 13.3, 13.4

l Key topics:
l Why query optimization is so important?
l How to enumerate different query plans for a single

SQL query
l How to estimate the sizes of “intermediate results”
l How to “search” the space of all query plans efficiently

Query Optimization

Query Optimization

l Overview
l Statistics Estimation
l Transformation of Relational Expressions
l Optimization Algorithms

Equivalence of Expressions

l Two relational expressions equivalent iff:
l Their result is identical on all legal databases

l Equivalence rules:
l Allow replacing one expression with another

l Examples:
1.

2. Selections are commutative

))(()(
2121
EE qqqq sss =Ù

))(())((
1221
EE qqqq ssss =

Equivalence Rules

l Examples:
3.

5. E1 q E2 = E2 q E1

7(a). If q0 only involves attributes from E1

sq0(E1 q E2) = (sq0(E1)) q E2

l And so on…
l Many rules of this type

)())))((((
121
EE LLnLL P=PPP !!

Pictorial Depiction

Example

l Find the names of all customers with an account at a Brooklyn branch
whose account balance is over $1000.
Pcustomer_name(sbranch_city = “Brooklyn” Ù balance > 1000

(branch (account depositor)))
l Apply the rules one by one

Pcustomer_name((sbranch_city = “Brooklyn” Ù balance > 1000

(branch account)) depositor)

Pcustomer_name(((sbranch_city = “Brooklyn” (branch)) (s balance > 1000

(account))) depositor)

Example

Equivalence of Expressions

l The rules give us a way to enumerate all equivalent
expressions
l Note that the expressions don’t contain physical access methods,

join methods etc…
l Simple Algorithm:

l Start with the original expression
l Apply all possible applicable rules to get a new set of

expressions
l Repeat with this new set of expressions
l Till no new expressions are generated

Equivalence of Expressions

l Works, but is not feasible
l Consider a simple case:

l R1 (R2 (R3 (… Rn)))….)

l Just join commutativity and associativity will give us:
l At least:

l n^2 * 2^n
l At worst:

l n! * 2^n

l Typically the process of enumeration is combined with the
search process

Evaluation Plans

l We still need to choose the join methods etc..
l Option 1: Choose for each operation separately

l Usually okay, but sometimes the operators interact
l Consider joining three relations on the same attribute:

§ R1 a (R2 a R3)
l Best option for R2 join R3 might be hash-join

§ But if R1 is sorted on a, then sort-merge join is preferable
§ Because it produces the result in sorted order by a

l Also, we need to decide whether to use pipelining or
materialization

l Such issues are typically taken into account when doing the
optimization

Query Optimization

l Introduction
l Statistics Estimation
l Transformation of Relational Expressions
l Optimization Algorithms

Optimization Algorithms

l Two types:
l Exhaustive: That attempt to find the best plan
l Heuristical: That are simpler, but are not guaranteed to find

the optimal plan

l Consider a simple case
l Join of the relations R1, …, Rn
l No selections, no projections

l Still very large plan space

Searching for the best plan

l Option 1:
l Enumerate all equivalent expressions for the original query

expression
l Using the rules outlined earlier

l Estimate cost for each and choose the lowest

l Too expensive !
l Consider finding the best join-order for r1 r2 . . . rn.
l There are (2(n – 1))!/(n – 1)! different join orders for above

expression. With n = 7, the number is 665280, with n = 10,
the number is greater than 176 billion!

Searching for the best plan

l Option 2:
l Dynamic programming

l There is too much commonality between the plans
l Also, costs are additive

§ Caveat: Sort orders (also called “interesting orders”)

l Reduces the cost down to O(n3^n) or O(n2^n) in most
cases
l Interesting orders increase this a little bit

l Considered acceptable
l Typically n < 10.

l Switch to heuristic if not acceptable

Heuristic Optimization

l Dynamic programming is expensive
l Use heuristics to reduce the number of choices
l Typically rule-based:

l Perform selection early (reduces the number of tuples)
l Perform projection early (reduces the number of attributes)
l Perform most restrictive selection and join operations before other

similar operations.

l Some systems use only heuristics, others combine heuristics
with partial cost-based optimization.

Query Optimization

l Introduction
l Transformation of Relational Expressions
l Optimization Algorithms
l Statistics Estimation
l Summary

Query Optimization

l Integral component of query processing
l Why ?

l One of the most complex pieces of code in a
database system

l Active area of research
l E.g. XML Query Optimization ?
l What if you don’t know anything about the statistics
l Better statistics
l Etc …

