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! Week 1: File Organization and Indexes

! Week 2: Query Processing

! Week 3: Query Optimization; Parallel Databases 1

! Week 4: Parallel Databases; Mapreduce; Transactions 1
ê Map-reduce and Apache Spark (Posted early for Project 5)

ê Parallel Databases 2: Execution and Other Issues

ê Transactions 1

ê Homework Due April 24

! Week 5: Transactions 2 (Homework Due May 1)

! Week 6: Miscellaneous Topics (Homework Due May 8)

Spring 2020 – Online Instruction Plan



”Big Data”

! Very large volumes of data being collected
êDriven by growth of web, social media, and more recently 

internet-of-things
êWeb logs were an early source of data

Ø Analytics on web logs has great value for 
advertisements, web site structuring, what posts to 
show to a user, etc

! Big Data:  differentiated from data handled by earlier 
generation databases
êVolume: much larger amounts of data stored
êVelocity: much higher rates of insertions
êVariety: many types of data, beyond relational data





Why (Parallel) Databases Don’t Work

! The data is often not relational in nature
ê E.g., images, text, graphs

! The analysis/queries are not relational in nature
ê E.g., Image Analysis, Text Analytics, Natural Language Processing, Web Analytics, Social 

Network Analysis, Machine Learning, etc.
ê Databases don’t really have constructs to support this 

Ø User-defined functions can help to some extent

ê Need to interleave relational-like operations with non-relational (e.g., data cleaning, etc.)

ê Domain users are more used to procedural languages

! The operations are often one-time
ê Only need to analyse images once in a while to create a “deep learning” model
ê Databases are really better suited for repeated analysis of the data

! Much of the analysis not time-sensitive
! Parallel databases too expensive given the data volumes

ê Were designed for large enterprises, with typically big budgets





Distributed File Systems
! A distributed file system stores data across a large collection of 

machines, but provides single file-system view

! Highly scalable distributed file system for large data-intensive 
applications.
ê E.g., 10K nodes, 100 million files, 10 PB

! Provides redundant storage of massive amounts of data on 
cheap and unreliable computers
ê Files are replicated to handle hardware failure
ê Detect failures and recovers from them

! Examples: 
ê Google File System (GFS)
ê Hadoop File System (HDFS)



Hadoop File System Architecture

§ Single Namespace for entire cluster
§ Files are broken up into blocks

• Typically 64 MB block size
• Each block replicated on multiple 

DataNodes
§ Client

• Finds location of blocks from 
NameNode

• Accesses data directly from 
DataNode

• Maps a filename to list of Block IDs
• Maps each Block ID to DataNodes

containing a replica of the block

Maps a Block ID to a physical location 
on disk



Key-Value Storage Systems

! Unlike HDFS, focus here on storing large numbers (billions or even 
more) of small (KB-MB) sized records
ê uninterpreted bytes, with an associated key

Ø E.g., Amazon S3, Amazon Dynamo
ê Wide-table (can have arbitrarily many attribute names) with associated key

– Google BigTable, Apache Cassandra, Apache Hbase, Amazon DynamoDB
– Allows some operations (e.g., filtering) to execute on storage node

ê JSON
Ø MongoDB, CouchDB (document model)

! Records partitioned across multiple machines
ê Queries are routed by the system to appropriate machine

! Records replicated across multiple machines for fault tolerance as 
well as efficient querying
ê Need to guarantee “consistency” when data is updated
ê “Distributed Transactions”



Key-Value Storage Systems

! Key-value stores support
ê put(key, value):  used to store values with an associated key, 
ê get(key):  which retrieves the stored value associated with the 

specified key
ê delete(key) -- Remove the key and its associated value

! Some support range queries on key values
! Document stores support richer queries (e.g., MongoDB)

ê Slowly evolving towards the richness of SQL
! Not full database systems (increasingly changing)

ê Have no/limited support for transactional updates
ê Applications must manage query processing on their own

! Not supporting above features makes it easier to build scalable 
data storage systems
ê Also called NoSQL systems



Replication and Consistency

! Availability (system can run even if parts have failed)
ê Typically via replication

! Consistency
ê All live replicas have same value, and each read sees latest version
ê Often implemented using majority protocols

Ø E.g., have 3 replicas, reads/writes must access 2 replicas

! Network partitions (network can break into two or more parts, 
each with active systems that can’t talk to other parts)

! Distributed systems will ”partition” at some point – must choose 
consistency or availability
ê Brewer’s CAP “Theorem”
ê Traditional database choose consistency
ê Most Web applications choose availability



The MapReduce Paradigm

! Platform for reliable, scalable parallel computing

! Abstracts issues of distributed and parallel environment from 
programmer
ê Programmer provides core logic (via map() and reduce() functions)
ê System takes care of parallelization of computation, coordination, etc.

! Paradigm dates back many decades 
ê But very large scale implementations running on clusters with 10^3 to 

10^4 machines are more recent
ê Google Map Reduce, Hadoop, ..

! Data storage/access typically done using distributed file systems 
or key-value stores



MapReduce Framework
! Provides a fairly restricted, but still powerful abstraction for programming

! Programmers write a pipeline of functions, called map or reduce
ê map programs

Ø inputs: a list of “records” (record defined arbitrarily – could be images, 
genomes etc…)

Ø output: for each record, produce a set of “(key, value)” pairs

ê reduce programs
Ø input: a list of “(key, {values})” grouped together from the mapper
Ø output: whatever

ê Both can do arbitrary computations on the input data as long as the basic 
structure is followed



MapReduce Framework
input files mappers intermediate

files
reducers output

files



Word Count Example

for a rewrite of our production indexing system. Sec-
tion 7 discusses related and future work.

2 Programming Model

The computation takes a set of input key/value pairs, and
produces a set of output key/value pairs. The user of
the MapReduce library expresses the computation as two
functions: Map and Reduce.
Map, written by the user, takes an input pair and pro-
duces a set of intermediate key/value pairs. The MapRe-
duce library groups together all intermediate values asso-
ciated with the same intermediate key I and passes them
to the Reduce function.
The Reduce function, also written by the user, accepts
an intermediate key I and a set of values for that key. It
merges together these values to form a possibly smaller
set of values. Typically just zero or one output value is
produced per Reduce invocation. The intermediate val-
ues are supplied to the user’s reduce function via an iter-
ator. This allows us to handle lists of values that are too
large to fit in memory.

2.1 Example
Consider the problem of counting the number of oc-
currences of each word in a large collection of docu-
ments. The user would write code similar to the follow-
ing pseudo-code:

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");

reduce(String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);

Emit(AsString(result));

The map function emits each word plus an associated
count of occurrences (just ‘1’ in this simple example).
The reduce function sums together all counts emitted
for a particular word.
In addition, the user writes code to fill in a mapreduce
specification object with the names of the input and out-
put files, and optional tuning parameters. The user then
invokes the MapReduce function, passing it the specifi-
cation object. The user’s code is linked together with the
MapReduce library (implemented in C++). Appendix A
contains the full program text for this example.

2.2 Types

Even though the previous pseudo-code is written in terms
of string inputs and outputs, conceptually the map and
reduce functions supplied by the user have associated
types:
map (k1,v1) → list(k2,v2)
reduce (k2,list(v2)) → list(v2)

I.e., the input keys and values are drawn from a different
domain than the output keys and values. Furthermore,
the intermediate keys and values are from the same do-
main as the output keys and values.
Our C++ implementation passes strings to and from
the user-defined functions and leaves it to the user code
to convert between strings and appropriate types.

2.3 More Examples

Here are a few simple examples of interesting programs
that can be easily expressed as MapReduce computa-
tions.

Distributed Grep: The map function emits a line if it
matches a supplied pattern. The reduce function is an
identity function that just copies the supplied intermedi-
ate data to the output.

Count of URL Access Frequency: The map func-
tion processes logs of web page requests and outputs
〈URL,1〉. The reduce function adds together all values
for the same URL and emits a 〈URL,total count〉
pair.

Reverse Web-Link Graph: The map function outputs
〈target,source〉 pairs for each link to a target
URL found in a page named source. The reduce
function concatenates the list of all source URLs as-
sociated with a given target URL and emits the pair:
〈target, list(source)〉

Term-Vector per Host: A term vector summarizes the
most important words that occur in a document or a set
of documents as a list of 〈word, frequency〉 pairs. The
map function emits a 〈hostname,term vector〉
pair for each input document (where the hostname is
extracted from the URL of the document). The re-
duce function is passed all per-document term vectors
for a given host. It adds these term vectors together,
throwing away infrequent terms, and then emits a final
〈hostname,term vector〉 pair.
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MapReduce Framework: Word Count

input files mappers intermediate
files

reducers

(a, 8)
(c, 5)

output
files

a b a c d b 

b c d a a a

a b a b a b

c c c c c 

(a, 1)
(a, 1)
(c, 1)
(a, 1)
(a, 1)
(a, 1)

…

(a, 1)
(b, 1)
(a, 1)
(c, 1)
(d, 1)
(b, 1)

(b, 1)
(d, 1)
(b, 1)
(b, 1)
(d, 1)
(b, 1)

…

(b, 6)
(d, 2)



More Efficient Word Count

input files mappers intermediate
files

reducers

(a, 8)
(c, 5)

output
files

a b a c d b 

b c d a a a

a b a b a b

c c c c c 

(a, 2)
(a, 3)
(c, 1)
(c, 5)

(a, 2)
(b, 2)
(c, 1)
(d, 1)

…

(b, 6)
(d, 2)

Called “mapper-side” combiner



Hadoop MapReduce

! Google pioneered original map-reduce implementation
ê For building web indexes, text analysis, PageRank, etc.

! Hadoop -- widely used open source implementation in Java

! Huge ecosystem built around Hadoop now, including HDFS, 
consistency mechanisms, connectors to different systems (e.g., 
key-value stores, databases), etc.

! Apache Spark a newer implementation of Map-Reduce
ê More user-friendly syntax
ê Significantly faster because of in-memory processing
ê SQL-like in many ways (“DataFrames”)



Spark

! Resilient Distributed Dataset (RDD) abstraction
ê Collection of records that can be stored across multiple machines

! RDDs can be created by applying algebraic operations on 
other RDDs
ê Or from loading data from HDFS, key-value stores, etc.

! RDDs can be lazily computed when needed

! “DataFrames” is an abstraction built on top of RDDs
ê Not unlike “relations”
ê Supports relational operations like Joins, Aggregates, etc.

! Incorporates “Query Optimization” today as well



Spark

! Walk through Spark Programming Guides and the Jupyter
Notebook



Summary
! Traditional databases don’t provide the right abstractions for many newer 

data processing/analytics tasks

! Led to development of NoSQL systems and Map-Reduce (or similar) 
frameworks
ê Easier to get started
ê Easier to handle ad hoc and arbitrary tasks
ê Not as efficient

–

! Over the last 10 years, seen increasing convergence 
ê NoSQL stores increasingly support SQL constructs like joins and aggregations
ê Map-reduce frameworks also evolved to support joins and SQL more explicitly
ê Databases evolved to support more data types, richer functionality for ad hoc 

processing

! Think of Map-Reduce systems as another option 
ê Appropriate in some cases, not a good fit in other cases


