Transactions; Concurrency;
Recovery

Amol Deshpande
CMSC424

Spring 2020 - Online Instruction Plan

B Week 1: File Organization and Indexes
B Week 2: Query Processing
B Week 3: Query Optimization; Parallel Databases 1

B Week 4: Parallel Databases; Mapreduce; Transactions 1

% Map-reduce and Apache Spark

* Parallel Databases 2: Execution and Other Issues
% Transactions 1: ACID, SQL Transactions

* Homework Due April 24

B Week 5: Transactions 2 (Homework Due May 1)
B Week 6: Miscellaneous Topics (Reading Homework Due May 8)

Transactions: Overview

M Book Chapters
*14.1,14.2,14.3,14.4,14.5

M Key topics:
% Transactions and ACID Properties
* Different states a transaction goes through
* Notion of a "Schedule”

% Introduction to Serializability

Transaction Concept

B A transaction is a unit of program execution that accesses
and possibly updates various data items.

B E.g. transaction to transfer $50 from account A to account B:

1.

o 0k WD

read(A)
A==A-50
write(A)
read(B)
B:=B+50
write(B)

B Two main issues to deal with:

* Failures of various kinds, such as hardware failures and system

crashes

* Concurrent execution of multiple transactions

Overview

B Transaction: A sequence of database actions enclosed within
special tags

B Properties:

* Atomicity: Entire transaction or nothing

* Consistency: Transaction, executed completely, takes database
from one consistent state to another

* [solation: Concurrent transactions appear to run in isolation

w Durability: Effects of committed transactions are not lost

B Consistency: Transaction programmer needs to guarantee that

> DBMS can do a few things, e.g., enforce constraints on the data

B Rest: DBMS guarantees

How does..

M .. this relate to queries that we discussed ?

* Queries don’t update data, so durability and consistency not
relevant

* Would want concurrency

> Consider a query computing total balance at the end of
the day

* Would want isolation

> What if somebody makes a transfer while we are
computing the balance

» Typically not guaranteed for such long-running queries

m TPC-Cvs TPC-H

Assumptions and Goals

B Assumptions:
* The system can crash at any time
* Similarly, the power can go out at any point
> Contents of the main memory won'’t survive a crash, or power outage
* BUT... disks are durable. They might stop, but data is not lost.
> For now.
* Disks only guarantee atomic sector writes, nothing more

* Transactions are by themselves consistent

B Goals:
* Guaranteed durability, atomicity

* As much concurrency as possible, while not compromising isolation
and/or consistency

> Two transactions updating the same account balance... NO
> Two transactions updating different account balances... YES

Transaction states

ﬁﬁ Successful
Cgrfni@ >® Completion

Initial State —
stays in this
during execution

Any changes
have been rolled
back

Next...

B Concurrency: Why?
* Increased processor and disk utilization
* Reduced average response times

B Concurrency control schemes

* A CC scheme is used to guarantee that concurrency does not lead
to problems

* For now, we will assume durability is not a problem
> S0 no crashes
> Though transactions may still abort

B Schedules
B When is concurrency okay ?

* Serial schedules
* Serializability

A Schedule

Transactions:

T1:
T2:

transfers $50 from Ato B
transfers 10% of Ato B

Database constraint: A + B is constant (checking+saving accts)

T1 T2

read(A)

A=A-50

write(A)

read(B)

B=B+50

write(B)
read(A)
tmp = A*0.1
A=A-tmp
write(A)
read(B)
B =B+ tmp
write(B)

Effect: Before After
A 100 45
B 50 105

Each transaction obeys
the constraint.

This schedule does too.

Schedules

B A schedule is simply a (possibly interleaved)
execution sequence of transaction instructions

B Serial Schedule: A schedule in which transaction
appear one after the other

* ie., No interleaving

B Serial schedules satisfy isolation and consistency

* Since each transaction by itself does not introduce
iInconsistency

Example Schedule

B Another “serial” schedule:

T1 T2
read(A) Effect: Before After
tmp = A"0.1 A 100 40
A=A—tmp B 50 110
write(A)
read(B)
B =B+ tmp
write(B)
read(A)
A=A-50 |
write(A) Consistent ?
read(B) Constraint is satisfied.
B=B+50
write(B) Since each Xion is consistent, any

serial schedule must be consistent

Another schedule

T1 T2

read(A)

A=A-50

write(A)
read(A)
tmp = A*0.1
A=A-tmp
write(A)

read(B)

B=B+50

write(B)
read(B)
B=B+tmp

write(B)

Is this schedule okay ?
Lets look at the final effect...

Effect: Before After
A 100 45
B 50 105

Consistent.
So this schedule is okay too.

Another schedule

T1 T2

read(A)

A=A-50

write(A)
read(A)
tmp = A*0.1
A=A-tmp
write(A)

read(B)

B=B+50

write(B)
read(B)
B =B+ tmp
write(B)

Is this schedule okay ?
Lets look at the final effect...

Effect: Before After
A 100 45
B 50 105

Further, the effect same as the
serial schedule 1.

Called serializable

Example Schedules (Cont.)

A “bad” schedule

T1 T2

read(A)

A=A-50 Effect: Before After
read(A) A 100 50
tmp = A*0.1 B 50 60
A=A-tmp
write(A)
read(B)

Not consistent

write(A)

read(B)

B=B+50

write(B)
B =B+ tmp

write(B)

Serializability

A schedule is called serializable if its final effect is the same as that
of a serial schedule

Serializability = schedule is fine and doesn’t cause inconsistencies
* Since serial schedules are fine

Non-serializable schedules unlikely to result in consistent databases

We will ensure serializability
* Typically relaxed in real high-throughput environments

Not possible to look at all n! serial schedules to check if the effect is
the same

* Instead we ensure serializability by allowing or not allowing certain
schedules

Example Schedule with More Transactions

T; T T3 T4 Ts
read(X)
read(Y)
read(Z)
read(V)
read(W)
read(W)
read(Y)
write(Y)
write(Z)
read(U)
read(Y)
write(Y)
read(Z)
write(Z)
read(U)

write(U)

Summary

B Transactions is how we update data in databases

B ACID properties: foundations on which high-performance transaction
processing systems are built

* From the beginning, consistency has been a key requirement

* Although “relaxed” consistency is acceptable in many cases (originally
laid out in 1975)

B NoSQL systems originally eschewed ACID properties
* MongoDB was famously bad at guaranteeing any of the properties
* Lot of focus on what'’s called “eventual consistency”

B Recognition today that strict ACID is more important than that

* Hard to build any business logic if you have no idea if your transactions
are consistent

