
Transactions: Concurrency
Control

Amol Deshpande
CMSC424

! Week 1: File Organization and Indexes

! Week 2: Query Processing

! Week 3: Query Optimization; Parallel Databases 1

! Week 4: Parallel Databases; Mapreduce; Transactions 1

! Week 5: Transactions 2 (Homework Due May 1)

êTransactions: Serializability, Recoverability

êTransactions: Concurrency 1

êTransactions: Concurrency 2: Other Concurrency Schemes

êTransactions: Recovery

! Week 6: Distributed Transactions; Miscellaneous Topics
(Homework Due May 8)

Spring 2020 – Online Instruction Plan

! Book Chapters
ê15.1, 15.2, 15.3

! Key topics:
êUsing locking to guarantee concurrency

ê2-Phase Locking (2PL)

êHow “deadlocks” can happen and how to avoid them or
recover from them

êMulti-granularity locking and its benefits

Transactions: Concurrency 1

Approach, Assumptions etc..

! Approach
ê Guarantee conflict-serializability by allowing certain types of

concurrency
Ø Lock-based

! Assumptions:
ê Durability is not a problem

Ø So no crashes
Ø Though transactions may still abort

! Goal:
ê Serializability
ê Minimize the bad effect of aborts (cascade-less schedules only)

Lock-based Protocols
! A transaction must get a lock before operating on the data

! Two types of locks:
ê Shared (S) locks (also called read locks)

Ø Obtained if we want to only read an item – lock-S() instruction
ê Exclusive (X) locks (also called write locks)

Ø Obtained for updating a data item – lock-X() instruction

read(B)
B ßB-50
write(B)
read(A)
A ßA + 50
write(A)

read(A)
read(B)
display(A+B)

T1 T2
lock-X(B)
read(B)
B ßB-50
write(B)
unlock(B)
lock-X(A)
read(A)
A ßA + 50
write(A)
unlock(A)

lock-S(A)
read(A)
unlock(A)
lock-S(B)
read(B)
unlock(B)
display(A+B)

T1 T2

Lock-based Protocols

! Lock requests are made to the concurrency control manager

ê It decides whether to grant a lock request

! T1 asks for a lock on data item A, and T2 currently has a lock on it ?
ê Depends

! If compatible, grant the lock, otherwise T1 waits in a queue.

T2 lock type T1 lock type Should allow ?

Shared Shared YES

Shared Exclusive NO

Exclusive - NO

Lock-based Protocols

! How do we actually use this to guarantee serializability/recoverability ?
ê Not enough just to take locks when you need to read/write something

lock-X(B)
read(B)
B ßB-50
write(B)
unlock(B)

lock-X(A)
read(A)
A ßA + 50
write(A)
unlock(A)

T1

lock-X(A), lock-X(B)
TMP = (A + B) * 0.1
A = A - TMP
B = B + TMP
unlock(A), unlock(B)

NOT SERIALIZABLE

2-Phase Locking Protocol (2PL)

! Phase 1: Growing phase
ê Transaction may obtain locks
ê But may not release them

! Phase 2: Shrinking phase
ê Transaction may only release locks

! Can be shown that this achieves
conflict-serializability
ê lock-point: the time at which a

transaction acquired last lock
ê if lock-point(T1) < lock-point(T2),

there can’t be an edge from T2 to
T1 in the precedence graph

lock-X(B)
read(B)
B ßB-50
write(B)
unlock(B)

lock-X(A)
read(A)
A ßA + 50
write(A)
unlock(A)

T1

2 Phase Locking
! Example: T1 in 2PL

T1

lock-X(B)
read(B)
B ß B - 50
write(B)
lock-X(A)
read(A)
A ß A - 50
write(A)

unlock(B)
unlock(A)

{Growing phase

{Shrinking phase

2 Phase Locking
! Guarantees conflict-serializability, but not cascade-less

recoverability

T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)

<xction fails>

lock-X(A)
read(A)
write(A)
unlock(A)
Commit lock-S(A)

read(A)
Commit

2 Phase Locking
! Guarantees conflict-serializability, but not cascade-less

recoverability

! Guaranteeing just recoverability:
ê If T2 reads a dirty data of T1 (ie, T1 has not committed), then T2

can’t commit unless T1 either commits or aborts
ê If T1 commits, T2 can proceed with committing
ê If T1 aborts, T2 must abort

Ø So cascades still happen

Strict 2PL
! Release exclusive locks only at the very end, just before commit

or abort

Strict 2PL
will not
allow that

T1 T2 T3

lock-X(A), lock-S(B)
read(A)
read(B)
write(A)
unlock(A), unlock(B)

<xction fails>

lock-X(A)
read(A)
write(A)
unlock(A)
Commit lock-S(A)

read(A)
Commit

Works. Guarantees cascade-less and recoverable schedules.

Strict 2PL
! Release exclusive locks only at the very end, just before commit

or abort
ê Read locks are not important

! Rigorous 2PL: Release both exclusive and read locks only at the
very end
ê The serializability order === the commit order
ê More intuitive behavior for the users

Ø No difference for the system

! Lock conversion:
ê Transaction might not be sure what it needs a write lock on
ê Start with a S lock
ê Upgrade to an X lock later if needed
ê Doesn’t change any of the other properties of the protocol

Implementation of Locking

! A separate process, or a separate module

! Uses a lock table to keep track of currently assigned locks and
the requests for locks

Lock Table
! Black rectangles indicate granted locks,

white ones indicate waiting requests
! Lock table also records the type of lock

granted or requested
! New request is added to the end of the

queue of requests for the data item, and
granted if it is compatible with all earlier
locks

! Unlock requests result in the request
being deleted, and later requests are
checked to see if they can now be
granted

! If transaction aborts, all waiting or
granted requests of the transaction are
deleted
ê lock manager may keep a list of

locks held by each transaction, to
implement this efficiently

granted

waiting

T8

144

T1 T23

14

T23

17 123

T23 T1 T8 T2

1912

Recap so far…
! Concurrency Control Scheme

ê A way to guarantee serializability, recoverability etc

! Lock-based protocols
ê Use locks to prevent multiple transactions accessing the same data

items

! 2 Phase Locking
ê Locks acquired during growing phase, released during shrinking

phase

! Strict 2PL, Rigorous 2PL

More Locking Issues: Deadlocks

! No xction proceeds:
Deadlock

- T1 waits for T2 to unlock A
- T2 waits for T1 to unlock B

! 2PL does not prevent deadlock
ê Strict doesn’t either

T1 T2

lock-X(B)
read(B)
B ß B-50
write(B)

lock-X(A)

lock-S(A)
read(A)
lock-S(B)

Rollback transactions
Can be costly...

Preventing deadlocks

! Solution 1: A transaction must acquire all locks before it begins
ê Not acceptable in most cases

! Solution 2: A transaction must acquire locks in a particular order
over the data items
ê Also called graph-based protocols

! Solution 3: Use time-stamps; say T1 is older than T2
ê wait-die scheme: T1 will wait for T2. T2 will not wait for T1; instead it will

abort and restart
ê wound-wait scheme: T1 will wound T2 (force it to abort) if it needs a lock

that T2 currently has; T2 will wait for T1.
! Solution 4: Timeout based

ê Transaction waits a certain time for a lock; aborts if it doesn’t get it by
then

Deadlock detection and recovery

! Instead of trying to prevent deadlocks, let them happen and deal
with them if they happen

! How do you detect a deadlock?
ê Wait-for graph
ê Directed edge from Ti to Tj

Ø Ti waiting for Tj

T1 T2 T3 T4

S(V)

X(V)

S(W)

X(Z)

S(V)

X(W)

T1

T2
T4

T3

Suppose T4 requests lock-S(Z)....

Dealing with Deadlocks

! Deadlock detected, now what ?
ê Will need to abort some transaction
ê Prefer to abort the one with the minimum work done so far
ê Possibility of starvation

Ø If a transaction is aborted too many times, it may be given
priority in continueing

Locking granularity

! Locking granularity
ê What are we taking locks on ? Tables, tuples, attributes ?

! Coarse granularity
ê e.g. take locks on tables
ê less overhead (the number of tables is not that high)
ê very low concurrency

! Fine granularity
ê e.g. take locks on tuples
ê much higher overhead
ê much higher concurrency
ê What if I want to lock 90% of the tuples of a table ?

Ø Prefer to lock the whole table in that case

Granularity Hierarchy

The highest level in the example hierarchy is the entire database.
The levels below are of type area, file or relation and record in that
order.

Can lock at any level in the hierarchy

Granularity Hierarchy

! New lock mode, called intentional locks
ê Declare an intention to lock parts of the subtree below a node
ê IS: intention shared

Ø The lower levels below may be locked in the shared mode
ê IX: intention exclusive
ê SIX: shared and intention-exclusive

Ø The entire subtree is locked in the shared mode, but I might also
want to get exclusive locks on the nodes below

! Protocol:
ê If you want to acquire a lock on a data item, all the ancestors must

be locked as well, at least in the intentional mode
ê So you always start at the top root node

Granularity Hierarchy

(1) Want to lock F_a in shared mode, DB and A1 must be locked in at
least IS mode (but IX, SIX, S, X are okay too)

(2) Want to lock rc1 in exclusive mode, DB, A2,Fc must be locked in at
least IX mode (SIX, X are okay too)

Granularity Hierarchy

Parent Child can be
locked in locked in

IS
IX
S
SIX
X

P

C

IS, S
IS, S, IX, X, SIX
[S, IS] not necessary
X, IX, [SIX]
none

Compatibility Matrix with
Intention Lock Modes

! The compatibility matrix (which locks can be present
simultaneously on the same data item) for all lock modes is:

IS IX S S IX X

IS

IX

S

S IX

X

ü

ü

ü

ü

´

ü ü ü

ü

ü´

´

´ ´ ´ ´

´´ ´

´ ´

´

´

´´holder

requestor

Example

R1

t1
t2 t3 t4

T1(IS)

T1(S)

, T2(IX)

T2(X)

Examples
R

t1 t3 t4t2

f2.1 f2.2 f4.2 f4.2

T1(IX)

T1(IX)

T1(X)

R

t1 t3 t4t2

f2.1 f2.2 f4.2 f4.2

T1(IS)

T1(S)

R

t1 t3 t4t2

f2.1 f2.2 f4.2 f4.2

T1(SIX)

T1(IX)

T1(X)

Can T2 access object f2.2 in X mode?
What locks will T2 get?

Examples

! T1 scans R, and updates a few tuples:
ê T1 gets an SIX lock on R, then repeatedly gets an S lock on tuples of R,

and occasionally upgrades to X on the tuples.
! T2 uses an index to read only part of R:

ê T2 gets an IS lock on R, and repeatedly gets an S lock on tuples of R.
! T3 reads all of R:

ê T3 gets an S lock on R.
ê OR, T3 could behave like T2; can
use lock escalation to decide which.

-- IS IX

--

IS

IX

Ö

Ö

Ö

Ö Ö

Ö

S X

Ö
Ö

S

X

Ö Ö

Ö

Ö

Ö

Ö Ö

Ö

Recap, Next….

! Deadlocks
ê Detection, prevention, recovery

! Locking granularity
ê Arranged in a hierarchy
ê Intentional locks

! Next video…
ê Brief discussion of some other concurrency schemes

