#### Misc: OLAP and Data Cubes; Information Retrieval

#### Amol Deshpande CMSC424

#### **Spring 2020 – Online Instruction Plan**

- Week 1: File Organization and Indexes
- Week 2: Query Processing
- Week 3: Query Optimization; Parallel Databases 1
- Week 4: Parallel Databases; Mapreduce; Transactions 1
- Week 5: Transactions 2
- Week 6: Homework Due May 8
  - Transactions: Recovery
  - Misc 1: Distributed Transactions, and Object-oriented/Objectrelational databases
  - ★ Misc 2: OLAP and Data Cubes, and Information Retrieval

#### **OLAP and Data Cubes**

#### Book Chapters

**★**5.7

Key topics:

★ Data Warehouses

Star and Snowflake Schemas

🕇 Data Cubes

#### **Data Warehouses**

- A repository of integrated information for querying and analysis purposes
- A (usually) stand-alone system that integrates data from everywhere
  - **★** Read-only, typically not kept up-to-date with the *real* data
  - ★ Geared toward business analytics, data mining etc...
  - ★ HUGE market today
- Heavily optimized
  - ★ Specialized query processing and indexing techniques are used
  - High emphasis on pre-computed data structures like summary tables, data cubes
- Analysis cycle:
  - Extract data from databases with queries, visualize/analyze with desktop tools
  - ★ E.g., <u>Tableau</u>

#### **Data Warehouses**



Figure 1. Data Warehousing Architecture

#### **Data Warehouses**



Query processing algorithms heavily optimized for these types of schemas

#### Many queries of the type:

Selections on dimension tables (e.g., state = 'MD') Join fact table with dimension tables Aggregate on a "measure" attribute (e.g., Quantity, TotalPrice)

#### For example:

select c\_city, o\_year, SUM(quantity)
from Fact, Customer, Product
where p\_category = 'Tablet';

Figure 4. A Snowflake Schema.

#### OLAP

- On-line Analytical Processing
- Why ?
  - Exploratory analysis
    - > Interactive
    - Different queries than typical SPJ SQL queries
  - ★ Data CUBE
    - > A summary structure used for this purpose
      - E.g. give me total sales by zipcode; now show me total sales by customer employment category
    - > Much much faster than using SQL queries against the raw data
      - The tables are huge
  - Applications:
    - ★ Sales reporting, Marketing, Forecasting etc etc

#### **Data Analysis and OLAP**

#### Online Analytical Processing (OLAP)

- Interactive analysis of data, allowing data to be summarized and viewed in different ways in an online fashion (with negligible delay)
- Data that can be modeled as dimension attributes and measure attributes are called multidimensional data.

#### **Measure** attributes

- measure some value
- can be aggregated upon
- > e.g., the attribute *number* of the *sales* relation

#### **\*** Dimension attributes

- > define the dimensions on which measure attributes (or aggregates thereof) are viewed
- > e.g., attributes *item\_name, color,* and *size* of the *sales* relation

#### **Example sales relation**

| item_name | color  | clothes_size | quantity |
|-----------|--------|--------------|----------|
| skirt     | dark   | small        | 2        |
| skirt     | dark   | medium       | 5        |
| skirt     | dark   | large        | 1        |
| skirt     | pastel | small        | 11       |
| skirt     | pastel | medium       | 9        |
| skirt     | pastel | large        | 15       |
| skirt     | white  | small        | 2        |
| skirt     | white  | medium       | 5        |
| skirt     | white  | large        | 3        |
| dress     | dark   | small        | 2        |
| dress     | dark   | medium       | 6        |
| dress     | dark   | large        | 12       |
| dress     | pastel | small        | 4        |
| dress     | pastel | medium       | 3        |
| dress     | pastel | large        | 3        |
| dress     | white  | small        | 2        |
| dress     | white  | medium       | 3        |
| dress     | white  | large        | 0        |
| shirt     | dark   | small        | 2        |
| chirt     | dark   | medium       | 6        |

-

. . .

. . .

. . .

. . .

. . .

#### Cross Tabulation of sales by item\_name and color

clothes\_size all

|           |       | dark | pastel | white | total |
|-----------|-------|------|--------|-------|-------|
| item_name | skirt | 8    | 35     | 10    | 53    |
|           | dress | 20   | 10     | 5     | 35    |
|           | shirt | 14   | 7      | 28    | 49    |
|           | pants | 20   | 2      | 5     | 27    |
|           | total | 62   | 54     | 48    | 164   |

color

Example of a cross-tabulation (cross-tab), or a pivot-table.

- ★ Values for one of the dimension attributes form the row headers
- ★ Values for another dimension attribute form the column headers
- ★ Other dimension attributes are listed on top
- Values in individual cells are (aggregates of) the values of the dimension attributes that specify the cell.

#### **Data Cube**

- A data cube is a multidimensional generalization of a cross-tab
- Can have n dimensions; we show 3 below
- Cross-tabs can be used as views on a data cube



#### **Hierarchies on Dimensions**

- Hierarchy on dimension attributes: lets dimensions to be viewed at different levels of detail
  - ★ E.g., the dimension DateTime can be used to aggregate by hour of day, date, day of week, month, quarter or year



#### **Cross Tabulation With Hierarchy**

Cross-tabs can be easily extended to deal with hierarchies

• Can drill down or roll up on a hierarchy

clothes\_size: **all** 

| category   | item_name |      | color  |       |      |     |
|------------|-----------|------|--------|-------|------|-----|
|            |           | dark | pastel | white | tota | al  |
| womenswear | skirt     | 8    | 8      | 10    | 53   |     |
|            | dress     | 20   | 20     | 5     | 35   |     |
|            | subtotal  | 28   | 28     | 15    |      | 88  |
| menswear   | pants     | 14   | 14     | 28    | 49   |     |
|            | shirt     | 20   | 20     | 5     | 27   |     |
|            | subtotal  | 34   | 34     | 33    |      | 76  |
| total      |           | 62   | 62     | 48    |      | 164 |

#### **Relational Representation of Cross-tabs**

- Cross-tabs can be represented as relations
  - We use the value **all** is used to represent aggregates.
  - The SQL standard actually uses null values in place of **all** despite confusion with regular null values.

| item_name | color  | clothes_size | quantity |
|-----------|--------|--------------|----------|
| skirt     | dark   | all          | 8        |
| skirt     | pastel | all          | 35       |
| skirt     | white  | all          | 10       |
| skirt     | all    | all          | 53       |
| dress     | dark   | all          | 20       |
| dress     | pastel | all          | 10       |
| dress     | white  | all          | 5        |
| dress     | all    | all          | 35       |
| shirt     | dark   | all          | 14       |
| shirt     | pastel | all          | 7        |
| shirt     | White  | all          | 28       |
| shirt     | all    | all          | 49       |
| pant      | dark   | all          | 20       |
| pant      | pastel | all          | 2        |
| pant      | white  | all          | 5        |
| pant      | all    | all          | 27       |
| all       | dark   | all          | 62       |
| all       | pastel | all          | 54       |
| all       | white  | all          | 48       |
| all       | all    | all          | 164      |

#### **Extended Aggregation to Support OLAP**

The cube operation computes union of group by's on every subset of the specified attributes sales(item\_name, color, clothes\_size, quantity)

Consider the query

select item\_name, color, size, sum(number)
from sales
group by cube(item\_name, color, size)

Computers a union of eight different groupings of the *sales* relation:

{ (item\_name, color, size), (item\_name, color), (item\_name, size), (color, size), (item\_name), (color), (size), () }

where () denotes an empty group by list.

#### **Extended Aggregation (Cont.)**

The rollup construct generates union on every prefix of specified list of attributes

E.g.,

select item\_name, color, size, sum(number)
from sales
group by rollup(item\_name, color, size)

Generates union of four groupings:

{ (item\_name, color, size), (item\_name, color), (item\_name), () }

## **Extended Aggregation (Cont.)**

Multiple rollups and cubes can be used in a single group by clause

 Each generates set of group by lists, cross product of sets gives overall set of group by lists

E.g.,

select item\_name, color, size, sum(number)
from sales
group by rollup(item\_name), rollup(color, size)

generates the groupings

{*item\_name, ()*} *X* {*(color, size), (color), ()*}

= { (item\_name, color, size), (item\_name, color), (item\_name), (color, size), (color), () }

#### **Online Analytical Processing Operations**

**Pivoting:** changing the dimensions used in a cross-tab is called

- **Slicing:** creating a cross-tab for fixed values only
  - Sometimes called dicing, particularly when values for multiple dimensions are fixed.
- Rollup: moving from finer-granularity data to a coarser granularity
- Drill down: The opposite operation that of moving from coarser-granularity data to finer-granularity data

#### **OLAP Implementation**

- The earliest OLAP systems used multidimensional arrays in memory to store data cubes, and are referred to as multidimensional OLAP (MOLAP) systems.
- OLAP implementations using only relational database features are called relational OLAP (ROLAP) systems
- Hybrid systems, which store some summaries in memory and store the base data and other summaries in a relational database, are called hybrid OLAP (HOLAP) systems.

## **Data Mining**

- Searching for patterns in data
  - ★ Typically done in data warehouses
- Association Rules:
  - ★ When a customer buys X, she also typically buys Y
  - ★ Use ?
    - Move X and Y together in supermarkets
  - ★ A customer buys a lot of shirts
    - > Send him a catalogue of shirts
  - ★ Patterns are not always obvious
    - Classic example: It was observed that men tend to buy beer and diapers together (may be an urban legend)
- Other types of mining
  - ★ Classification
  - ★ Decision Trees

#### Summary

- Data analytics a major industry right now, and likely to grow in near future
  - ★ BIG Data !!
  - ★ Extracting (actionable) knowledge from data really critical
    - Especially in real-time
- Some key technologies:
  - Parallelism pretty much required
  - Column-oriented design
    - > Lay out the data column-by-column, rather than row-by-row
  - Heavy pre-computation (like Cubes)
  - ★ New types of indexes
    - Focusing on bitmap representations
  - Heavy compression
  - ★ Map-reduce??

#### **Information Retrieval**

Book Chapters

★ Chapter 21 — at a fairly high level

Key topics:

★ What is Information Retrieval?

★IF-TDF

★ Web crawling and searching



## **Information Retrieval Systems**

- Information retrieval (IR) systems use a simpler data model than database systems
  - Information organized as a collection of documents
  - Documents are unstructured, no schema
- Information retrieval locates relevant documents, on the basis of user input such as keywords or example documents
  - e.g., find documents containing the words "database systems"
- Can be used even on textual descriptions provided with non-textual data such as images
  - Web search engines are the most familiar example of IR systems

# **Information Retrieval Systems (Cont.)**

#### Differences from database systems

- IR systems don't deal with transactional updates (including concurrency control and recovery)
- Database systems deal with structured data, with schemas that define the data organization
- IR systems deal with some querying issues not generally addressed by database systems
  - Approximate searching by keywords
  - Ranking of retrieved answers by estimated degree of relevance



## **Keyword Search**

- In **full text** retrieval, all the words in each document are considered to be keywords.
  - We use the word term to refer to the words in a document
- Information-retrieval systems typically allow query expressions formed using keywords and the logical connectives *and*, *or*, and *not* 
  - Ands are implicit, even if not explicitly specified
- Ranking of documents on the basis of estimated relevance to a query is critical
  - Relevance ranking is based on factors such as
    - Term frequency
      - Frequency of occurrence of query keyword in document
    - Inverse document frequency
      - How many documents the query keyword occurs in
        - » Fewer → give more importance to keyword
    - Hyperlinks to documents
      - More links to a document  $\rightarrow$  document is more important



## **Relevance Ranking Using Terms**

**TF-IDF** (Term frequency/Inverse Document frequency) ranking:

- Let n(d) = number of terms in the document d
- n(d, t) = number of occurrences of term t in the document d.
- Relevance of a document *d* to a *term t*

$$TF(d, t) = log\left(1 + \frac{n(d, t)}{n(d)}\right)$$

> The log factor is to avoid excessive weight to frequent terms

• Relevance of document to *query Q* 

$$r(d, Q) = \sum_{t \in Q} \frac{\underline{TF}(d, t)}{n(t)}$$

# **Relevance Ranking Using Terms (Cont.)**

Most systems add to the above model

- Words that occur in title, author list, section headings, etc. are given greater importance
- Words whose first occurrence is late in the document are given lower importance
- Very common words such as "a", "an", "the", "it" etc. are eliminated

Called stop words

- Proximity: if keywords in query occur close together in the document, the document has higher importance than if they occur far apart
- Documents are returned in decreasing order of relevance score
  - Usually only top few documents are returned, not all

# PageRank: Ranking based on hyperlinks

- The probability that a random surfer (who follows links randomly) will end up at a particular page
  - **Intuitively:** Higher the probability, the more important the page
- Surfer model:
  - Choose a random page to visit with probability "alpha"
  - If the number of outgoing edges = n, then visit one of those pages =with probability (1 - alpha)/n



Database System Concepts - 6th Edition

©Silberschatz, Korth and Sudarshan



# **Indexing of Documents**

- An inverted index maps each keyword  $K_i$  to a set of documents  $S_i$  that contain the keyword
  - Documents identified by identifiers
- Inverted index may record
  - Keyword locations within document to allow proximity based ranking
  - Counts of number of occurrences of keyword to compute TF
- **and** operation: Finds documents that contain all of  $K_1$ ,  $K_2$ , ...,  $K_n$ .

• Intersection  $S_1 \cap S_2 \cap \ldots \cap S_n$ 

**or** operation: documents that contain at least one of  $K_1, K_2, ..., K_n$ 

• union,  $S_1 \cap S_2 \cap \ldots \cap S_n$ ,.

- Each  $S_i$  is kept sorted to allow efficient intersection/union by merging
  - "not" can also be efficiently implemented by merging of sorted lists



## **Measuring Retrieval Effectiveness**

- Information-retrieval systems save space by using index structures that support only approximate retrieval. May result in:
  - false negative (false drop) some relevant documents may not be retrieved.
  - false positive some irrelevant documents may be retrieved.
  - For many applications a good index should not permit any false drops, but may permit a few false positives.
- Relevant performance metrics:
  - precision what percentage of the retrieved documents are relevant to the query.
  - recall what percentage of the documents relevant to the query were retrieved.



#### **Measuring Retrieval Effectiveness**

- Recall vs. precision tradeoff:
  - Can increase recall by retrieving many documents (down to a low level of relevance ranking), but many irrelevant documents would be fetched, reducing precision
- Measures of retrieval effectiveness:
  - Recall as a function of number of documents fetched, or
  - Precision as a function of recall
    - Equivalently, as a function of number of documents fetched
  - E.g., "precision of 75% at recall of 50%, and 60% at a recall of 75%"
- Problem: which documents are actually relevant, and which are not



# **Web Search Engines**

Web crawlers are programs that locate and gather information on the Web

- Recursively follow hyperlinks present in known documents, to find other documents
  - Starting from a *seed* set of documents
- Fetched documents
  - Handed over to an indexing system
  - > Can be discarded after indexing, or store as a *cached* copy
- Crawling the entire Web would take a very large amount of time
  - Search engines typically cover only a part of the Web, not all of it
  - Take months to perform a single crawl



# **Summary and More**

Information retrieval a very mature field, that developed largely in parallel to databases

#### Much work on:

- similarity search (to find similar documents)
- better search and ranking algorithms
- natural language question/answering
- answer diversification (imagine searching for "apple")
- … and so on

SIGKDD, SIGIR, WWW the main research conferences

• Vs SIGMOD, VLDB, ICDE for databases