CMSC 423:
 Sequence Alignment

Part 1

Inexact matching: why?

- Redundancy in the genetic code: nucleotide sequence may differ, but proteins are the same

S	Y	P	T	D

TCTTATCCTACTGAT TCATACCCCACAGAC

Inexact matching: why?

- Redundancy in the genetic code: nucleotide sequence may differ, but proteins are the same
- Different amino-acid sequences can still fold the same way: function is unchanged

Inexact matching: why?

- Redundancy in the genetic code: nucleotide sequence may differ, but proteins are the same
- Different amino-acid sequences can still fold the same way: function is unchanged
- Aligning RNA sequences to DNA- need to account for gaps corresponding to exons

Splicing

- Genes contain exons (portions that code for amino acids) and introns (portions that do not code for amino acids)
- During splicing, introns are removed and exons are joined together

Inexact matching: why?

- Redundancy in the genetic code: nucleotide sequence may differ, but proteins are the same
- Different amino-acid sequences can still fold the same way: function is unchanged
- Aligning RNA sequences to DNA- need to account for gaps corresponding to exons
- Sequencing errors

How can we compare two sequences?

- Hamming distance: the number of mismatches in a string

ATGCATGC
TGCATGCA

Hamming distance $=8$

How can we compare two sequences?

- What if we align the sequences differently?

ATGCATGC-
 -TGCATGCA

We have much fewer mismatches!

Alignment of sequences v and w

$$
\begin{aligned}
& v=\text { ATGTTATA } \\
& w=\text { ATCGTCC }
\end{aligned}
$$

Gap symbol
AT-GTTATA
ATCGT-C-C

Alignment of sequences v and w

$v=$ ATGTTATA
$w=$ ATCGTCC

Alignment of sequences v and w

$$
\begin{aligned}
& v=\text { ATGTTATA } \\
& w=\text { ATCGTCC }
\end{aligned}
$$

Common subsequence: ATGT

Longest Common Subsequence (LCS)

- An alignment of two string maximizing the number of matches corresponds to the longest common subsequence
- Two strings can have more than one longest common subsequences
- How do we solve this?

