CMSC 423: Sequence Alignment

Part 1

 Redundancy in the genetic code: nucleotide sequence may differ, but proteins are the same

S Y P T D TCTTATCCTACTGAT TCATACCCCACAGAC

	U	С	A	G	
U	UUU UUC Phe	UCU UCC Sor	UAU UAC Tyr	UGU UGC Cys	U
	UUA UUG	UCA UCG	UAA Stop UAG Stop	UGA Stop UGG Trp	A
с	CUU Leu	CCU CCC Pro	CAU CAC His	CGU CGC	C
	CUA CUG	CCA TO CCG	CAA GIn CAG	CGA CGG	AG
A	AUU AUC Ile	ACU ACC Thr	AAU AAC Asn	AGU AGC Ser	U
	AUA AUG Met	ACA "" ACG	AAA Lys AAG	AGA Arg	AG
G		GUU GCU GUC Val GCC Ala GUA GCG GCG	GAU GAC Asp	GGU GGC	U
	GUA GUG		GAA Glu GAG	GGA GGG	AG

- Redundancy in the genetic code: nucleotide sequence may differ, but proteins are the same
- Different amino-acid sequences can still fold the same way: function is unchanged

- Redundancy in the genetic code: nucleotide sequence may differ, but proteins are the same
- Different amino-acid sequences can still fold the same way: function is unchanged
- Aligning RNA sequences to DNA- need to account for gaps corresponding to exons

Splicing

- Genes contain exons (portions that code for amino acids) and introns (portions that do not code for amino acids)
- During splicing, introns are removed and exons are joined together

- Redundancy in the genetic code: nucleotide sequence may differ, but proteins are the same
- Different amino-acid sequences can still fold the same way: function is unchanged
- Aligning RNA sequences to DNA- need to account for gaps corresponding to exons
- Sequencing errors

How can we compare two sequences?

• Hamming distance: the number of mismatches in a string

ATGCATGC TGCATGCA

Hamming distance = 8

How can we compare two sequences?

• What if we align the sequences differently?

ATGCATGC--TGCATGCA

We have much fewer mismatches!

Alignment of sequences v and w

v = ATGTTATAw = ATCGTCC

Gap symbol AT-GTTATA ATCGT-C-C

Alignment of sequences v and w

Alignment of sequences v and w

v = ATGTTATAw = ATCGTCC

Common subsequence: ATGT

Longest Common Subsequence (LCS)

- An alignment of two string maximizing the number of matches corresponds to the longest common subsequence
- Two strings can have more than one longest common subsequences
- How do we solve this?