CMSC 423:
 Sequence Alignment

Part 6

Running times

- All these algorithms run in $\mathrm{O}(\mathrm{mn})$ - quadratic time
- Note - this is significantly worse than exact matching

Running times

- All these algorithms run in $\mathrm{O}(\mathrm{mn})$ - quadratic time
- Note - this is significantly worse than exact matching
- BTW, how much space is needed?
- If we only need to find the best score (not the exact alignment as well) $O(\min (m, n))$
- If we the exact alignment too -O(m•n)

Running times

- All these algorithms run in $\mathrm{O}(\mathrm{mn})$ - quadratic time
- Note - this is significantly worse than exact matching
- Next week we'll talk about speed-up opportunities
- BTW, how much space is needed?
- If we only need to find the best score (not the exact alignment as well) $O(\min (m, n))$
- If we the exact alignment too - $\mathrm{O}(\mathrm{m} \cdot \mathrm{n})$
- If we need to find the best alignment - elegant divide and conquer algorithm leads to linear space solution

The Middle Node Problem

- Middle node = the node on the longest path belonging to the middle column

We can find a longest path's middle node without having to construct the path in the alignment graph

- i-path passes through the middle column at row i
- For each i between 0 and n, find the length of the longest i-path

$$
\text { Length }(i)=\operatorname{FromSource}(i)+\operatorname{ToSink}(i)
$$

FromSource $(i)=$ longest path from source to (i, middle)
ToSink(i) = longest path from ($(i$, middle) to sink

FromSource(i) can be computed in $\mathcal{O}(n)$ space and $\mathcal{O}(n \cdot m / 2)$ time

ToSink(i) can also be computed in $\mathcal{O}(n)$ space and $\mathcal{O}(n \cdot m / 2)$ time

Length $(i)=$ FromSource $(i)+$ ToSink(i)

- Can be computed in linear space
- Runtime is proportional to $n \cdot m / 2+n \cdot m / 2=n \cdot m$

Now, we divide the problem of finding the longest path form $(0,0)$ to (n, m) into two subproblems

$n \cdot m+n \cdot m / 2+n \cdot m / 4+\cdots<2 \cdot n \cdot m=0(n \cdot m)$

The Middle Edge Problem

