CMSC427 Drawing a line: Functional, implicit and parametric curves

Beyond the pixel - curves, surfaces and solids

Drawing a line segment

Drawbacks of standard formula: special cases

Solution: parametric form

Work for special cases?

Work for special cases?

Using t for proportional placement (midpoint, etc)

Varying the range of t: line, line segment and ray

Must t be linear?

 ${\mathcal X}$

Any use to y=mx+b?

Functional line equation

$$y = mx + b$$

Are P and P' above or below the line?

Any use to mx+b?

Functional line equation

$$y = mx + b$$

Are P and P' above or below the line?

y > mx + b	above

y < mx + b below

What you should know

- 1. Why functional equations are problematic
- 2. How to draw a with parametric equation
- 3. How to use ranges of t for segments, rays and lines
- 4. Using implicit and functional equations for shape inside/outside tests