CMSC427
Drawing a line:
Functional, implicit and parametric curves

Beyond the pixel - curves, surfaces and solids

Drawing a line segment

$$
\begin{aligned}
& y=m x+b \\
& P 0=(x 0, y 0) \\
& P 1=(x 1, y 1) \\
& \text { for } x=x 0 \text { to } \mathrm{x} 1 \\
& y=m x+b \\
& \text { putpixel }(x, y)
\end{aligned}
$$

Drawbacks of standard formula: special cases

Solution: parametric form

$$
y=\begin{aligned}
& x=t d x+p 0 x \\
& y=t d y+p 0 y \\
& m=\frac{d y}{d x}=\frac{y 1-y 0}{x 1-x 0} \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Work for special cases?

Using t for proportional placement (midpoint, etc)

$$
\text { (} x=t d x+p 0 x
$$

Varying the range of t : line, line segment and ray

Must t be linear?

Any use to $y=m x+b$?

Functional line equation
$y=m x+b$

Are P and P^{\prime} above or below the line?

Any use to $m x+b$?

Functional line equation

$$
y=m x+b
$$

Are P and P^{\prime} above or below the line?
$y>m x+b \quad$ above
$y<m x+b$ below

What you should know

1. Why functional equations are problematic
2. How to draw a with parametric equation
3. How to use ranges of t for segments, rays and lines
4. Using implicit and functional equations for shape inside/outside tests
