
CMSC427 
Drawing on 
the CPU vs. GPU



Basics of drawing: putting a pixel

PUTPIXEL(X,Y,R,G,B,A)



Basics of drawing: putting a pixel

PUTPIXEL(X,Y,R,G,B,A)

How much data to transfer?

Position X,Y – 16 bits each
Color – 8 bits each

Red
Green
Blue
Alpha (transparency)

Total: 8 bytes x # of pixels



Retaining state

SETCOLOR(R,G,B,A)
PUTPIXEL(X,Y)
PUTPIXEL(X,Y)

SETCOLOR() sets state of 
graphics card, doesn’t draw

PUTPIXEL() draws

Transfer color bits less often

More we can ”preload” on 
graphics card, less we need to 
do on CPU and then transfer



Delegating computation

SETCOLOR(R,G,B,A)
DRAWCIRCLE(X,Y,R)

SETCOLOR() sets state of 
graphics card, doesn’t draw

DRAWCIRCLE() draws by 
invoking routine on graphics 
card

Less data transferred. Transfer 
only values x,y,R but get all 
pixels in circle filled



2D vs. 3D GPUs

DRAWCIRCLE(X,Y,R)

Simple 2D GPU – fixed primitives
Drawcircle, drawline, drawsquare
MoveRegion, CopyRegion
2D screen oriented

Advanced 3D GPU – programmable
Shaders allow programmers to set shape, 
lighting, other effects



Drawing on CPU vs GPU

CPU

FRAMEBUFFER

GPU

Application

Graphics library Shader

Hardware

Software

BuffersBuffers



• Download to GPU in advance terrain model, 
character model, textures, character behaviors
• In gameplay only need to download changes in 

character state – movement, weapons, etc.
• Significantly reduce network bandwidth

Preloading for online game



1. Where drawing happens – software 
rendering on CPU vs hardware rendering on 
GPU

2. Why we might preload data to the GPU
3. That GPUs have state that applies to objects 

drawn
4. That simple GPUs have fixed 2D primitives, 

and advanced GPUs have programmable 3D 
pipelines

What you should know


