CMSC427 Computer Graphics Intro: What and Why

Instructor Prof. Roger Eastman Teaching assistant Saeed Hadadan

Former graphics students @ Loyola

Istvan Pely

Game designer

Brian Smith

Film VFX programmer

Jason Corso

Professor, UMich computer vision

FallOut 3, 4

Matrix, others

This video

- Course overview: what and why
- Course organization: how

What Synthetic imagery Why **Computer** games Special effects in films Illustrations Art Simulations

Your interest?

Key topics this semester

Modeling

Rendering

Interaction

Modeling

- Creating models of *objects* and *scenes*
 - Shape
 - Appearance
 - Behavior/animation
- Techniques
 - By hand
 - By algorithm
 - By capture

http://en.wikipedia.org/wiki/3D_modeling

Modeling by hand

- Example: Blender (freeware)
 - https://www.blender.org

- Professional tools
 - Artistic (Maya, Lightwave)
 - Engineering (Autocad, Solidworks)
 - General (Sketchup)
 - Free AND easy (Tinkercad)
 - Search for 3D modeling tool

Modeling by procedure

• Creating shape, behavior by algorithm

Sweeping Fractal Lines Dan Gries

(newly generated pic)

E-on Vue software for procedural environments

Modeling by capture

- Measure values from real world
- 3D scanner for static shapes
 - Structure IO sensor
 - Trnio/Scann3D on phones
- Motion capture for dynamics

Rendering

- Synthesis of 2D image from 3D scene
- <u>http://en.wikipedia.org/wiki/Rendering_(computer_graphics)</u>
- Input
 - Data structure that stores object and scene info (geometry, material properties, lights, camera)

- Output
 - 2D image (array of pixels)
 - Red, Green, Blue values for each pixel

Photorealistic rendering

• Physically based simulation of light, materials, camera. Slow, rendering farms, is constantly evolving. Soft shadows, realistic surfaces.

Interactive rendering

Real time, realistic but approximate physics.
Uses specialized GPUs, standard APIs
(OpenGL). Hard shadows, cheats in lighting.

Non-photorealistic rendering

- Stylized, cartoonish, for art or illustration
- <u>https://en.wikipedia.org/wiki/Non-photorealistic_rendering</u>

Beyond 2D rendering ...

• Stereo VR rendering

• Haptic feedback

- virtual objects
- Ultrasound, Univ. of Bristol

• 3D printing!

Interaction – input

- Broad range of input devices beyond keyboard, mouse
- Event driven programming

The Why?

- What's your interests?
- What's your experience?
- Why are you taking this course, and what do you want to get out of it?

- Graphics resume assignment due Thursday Sept. 3rd
- Submit on Canvas

Course objectives

- 1. Write efficient interactive 2D and 3D graphics programs using different graphics systems.
- 2. Create object, scene and behavioral models using algorithmic techniques.
- 3. Render these models at varying levels of realism.
- 4. Describe and apply mathematical, physical, psychological, and algorithmic foundations as needed for modeling, rendering and interaction.

Course organization

• Lecture

- Online TuTh 2:00-3:15 pm
- Will be recorded attendance not required
- Will post short videos online before class
- Class will quickly review material, focus on questions
- Canvas
 - Course material and assignments will be posted here.
- Piazza
 - We will use a class discussion forum for answering lecture and assignment questions.

Assume you

Know Java

Know OOP and data structures (420) Are familiar with some linear algebra Will review

Matrix operations

Don't assume you

Have programmed graphics before Have written interactive programs

Assignments and workload

- Homework (25%)
 - Weekly homeworks of varying effort and worth
- Quizzes and exams (30%)
- Projects and labs (45%)
 - Labs: short, focused programming exercises on particular concepts
 - Projects: more substantial programming efforts

Processing

- Complete open source, freeware graphics system from IDE to language to API
- Designed for artists, other "non-CS" types
 - Ben Fry and Casey Reas @ MIT
- Large ecology of supporting libraries
- Used this semester to sketch ideas
- Can be downloaded, or used online:
- <u>https://processing.org</u>
- <u>http://sketchpad.cc</u>