
CMSC 427 Dave Mount

CMSC 427: Lecture 5
Geometry and Geometric Programming

Geometric Programming: We are going to leave our discussion of OpenGL for a while, and discuss some
of the basic elements of geometry, which will be needed for the rest of the course. There are many
areas of computer science that involve computation with geometric entities. This includes not only
computer graphics, but also areas like computer-aided design, robotics, computer vision, and geo-
graphic information systems. In this and the next few lectures we will consider how this can be done,
and how to do this in a reasonably clean and painless way.

Computer graphics deals largely with the geometry of lines and linear objects in 3-space, because
light travels in straight lines. For example, here are some typical geometric problems that arise in
designing programs for computer graphics.

Transformations: You are asked to render a twirling boomerang flying through the air. How would
you represent the boomerang’s rotation and translation over time in 3-dimensional space? How
would you compute its exact position at a particular time?

Geometric Intersections: Given the same boomerang, how would you determine whether it has hit
another object?

Orientation: You have been asked to design the AI for a non-player agent in a flight combat simu-
lator. You detect the presence of a enemy aircraft in a certain direction. How should you rotate
your aircraft to either attack (or escape from) this threat?

Change of coordinates: We know the position of an object on a table with respect to a coordinate
system associated with the table. We know the position of the table with respect to a coordinate
system associated with the room. What is the position of the object with respect to the coordinate
system associated with the room?

Reflection and refraction: A wine glass filled with red wine sits on a table. A bright light illuminates
the glass from one side. The light passes through the glass and the liquid, and casts an interesting
pattern of light and dark regions on the table on the far side. Can you simulate this effect? The
wine glass is replaced with a shiny metal sculpture, and now, rather than passing through, the
light is reflected off the various surfaces of the sculpture and is cast onto the table.

Such basic geometric problems are fundamental to computer graphics, and over the next few lectures,
our goal will be to present the tools needed to answer these sorts of questions. (By the way, a good
source of information on how to solve these problems is the series of books entitled “Graphics Gems”.
Each book is a collection of many simple graphics problems and provides algorithms for solving
them.)

There are various formal geometric systems that arise naturally in computer graphics applications.
The principal ones are:

Affine Geometry: The geometry of simple “flat things”: points, lines, planes, line segments, trian-
gles, etc. There is no defined notion of distance, angles, or orientations, however.

Euclidean Geometry: The geometric system that is most familiar to us. It enhances affine geometry
by adding notions such as distances, angles, and orientations (such as clockwise and counter-
clockwise).

Lecture 5 1 Fall 2013



CMSC 427 Dave Mount

Projective Geometry: In Euclidean geometry, there is no notion of infinity (in the same way that
in standard arithmetic, you cannot divide by zero). But in graphics, we often need to deal with
infinity. (For example, two parallel lines in 3-dimensional space can meet at a common vanishing
point in a perspective rendering. Think of the point in the distance where two perfectly straight
train tracks appear to meet. Computing this vanishing point requires us to consider points at
infinity.) Projective geometry permits this.

You might wonder where linear algebra enters. We will make use of linear algebra as a concrete
reprensentational basis for these abstract geometric systems (in much the same way that a concrete
structure like an array is used to represent an abstract structure like a stack in object-oriented pro-
gramming). We will describe these systems, starting with the simplest, affine geometry.

Affine Geometry: The basic elements of affine geometry are:

• scalars, which we can just think of as being real numbers

• points, which define locations in space

• free vectors (or simply vectors), which are used to specify direction and magnitude, but have no
fixed position.

The term “free” means that vectors do not necessarily emanate from some position (like the origin),
but float freely about in space. There is a special vector called the zero vector,~0, that has no magnitude,
such that ~v +~0 = ~0 + ~v = ~v.

Note that we did not define a zero point or “origin” for affine space. This is an intentional omission.
No point special compared to any other point. (We will eventually have to break down and define
an origin in order to have a coordinate system for our points, but this is a purely representational
necessity, not an intrinsic feature of affine space.)

You might ask, why make a distinction between points and vectors? Although both can be represented
in the same way as a list of coordinates, they represent very different concepts. For example, points
would be appropriate for representing a vertex of a mesh, the center of mass of an object, the point of
contact between two colliding objects. In contrast, a vector would be appropriate for representing the
velocity of a moving object, the vector normal to a surface, the axis about which a rotating object is
spinning. (As computer scientists the idea of different abstract objects sharing a common representa-
tion should be familiar. For example, stacks and queues are two different abstract data types, but they
can both be represented as a 1-dimensional array.)

Because points and vectors are conceptually different, it is not surprising that the operations that can
be applied to them are different. For example, it makes perfect sense to multiply a vector and a scalar.
Geometrically, this corresponds to stretching the vector by this amount. It also makes sense to add
two vectors together. This involves the usual head-to-tail rule, which you learn in linear algebra. It
is not so clear, however, what it means to multiply a point by a scalar. (For example, the top of the
Washington monument is a point. What would it mean to multiply this point by 2?) On the other
hand, it does make sense to add a vector to a point. For example, if a vector points straight up and is
3 meters long, then adding this to the top of the Washington monument would naturally give you a
point that is 3 meters above the top of the monument.

We will use the following notational conventions. Points will usually be denoted by lower-case Roman
letters such as p, q, and r. Vectors will usually be denoted with lower-case Roman letters, such as u,

Lecture 5 2 Fall 2013



CMSC 427 Dave Mount

v, and w, and often to emphasize this we will add an arrow (e.g., ~u, ~v, ~w). Scalars will be represented
as lower case Greek letters (e.g., α, β, γ). In our programs, scalars will be translated to Roman (e.g.,
a, b, c). (We will sometimes violate these conventions, however. For example, we may use c to denote
the center point of a circle or r to denote the scalar radius of a circle.)

Affine Operations: The table below lists the valid combinations of scalars, points, and vectors. The formal
definitions are pretty much what you would expect. Vector operations are applied in the same way that
you learned in linear algebra. For example, vectors are added in the usual “tail-to-head” manner (see
Fig. 1). The difference p − q of two points results in a free vector directed from q to p. Point-vector
addition r + ~v is defined to be the translation of r by displacement ~v. Note that some operations (e.g.
scalar-point multiplication, and addition of points) are explicitly not defined.

vector← scalar · vector, vector← vector/scalar scalar-vector multiplication
vector← vector + vector, vector← vector− vector vector-vector addition
vector← point− point point-point difference
point← point + vector, point← point− vector point-vector addition

u

v

u + v
q

p

p− q

r

v

r + v

Vector addition Point subtraction Point-vector addition

Fig. 1: Affine operations.

Affine Combinations: Although the algebra of affine geometry has been careful to disallow point addition
and scalar multiplication of points, there is a particular combination of two points that we will consider
legal. The operation is called an affine combination.

Let’s say that we have two points p and q and want to compute their midpoint r, or more generally a
point r that subdivides the line segment pq into the proportions α and 1−α, for some α ∈ [0, 1]. (The
case α = 1/2 is the case of the midpoint). This could be done by taking the vector q − p, scaling it
by α, and then adding the result to p. That is,

r = p+ α(q − p),
(see Fig. 2(a)). Another way to think of this point r is as a weighted average of the endpoints p and
q. Thinking of r in these terms, we might be tempted to rewrite the above formula in the following
(technically illegal) manner:

r = (1− α)p+ αq,

(see Fig. 2(b)). Observe that as α ranges from 0 to 1, the point r ranges along the line segment from
p to q. In fact, we may allow to become negative in which case r lies to the left of p, and if α > 1,
then r lies to the right of q (see Fig. 2(c)). The special case when 0 ≤ α ≤ 1, this is called a convex
combination.

In general, we define the following two operations for points in affine space.

Lecture 5 3 Fall 2013



CMSC 427 Dave Mount

p

r = p + 2
3(q − p)

q

p
1
3p +

2
3q

q

p

q

α < 0

0 < α < 1

α > 1(1− α)p + αq
p

q

r

0p + 1
2r +

1
2q

1
2p +

1
4r +

1
4q

(a) (b) (c) (d)

Fig. 2: Affine combinations.

Affine combination: Given a sequence of points p1, p2, . . . , pn, an affine combination is any sum of
the form

α1p1 + α2p2 + . . .+ αnpn,

where α1, α2, . . . , αn are scalars satisfying
∑

i αi = 1.

Convex combination: Is an affine combination, where in addition we have αi ≥ 0 for 1 ≤ i ≤ n.

Affine and convex combinations have a number of nice uses in graphics. For example, any three
noncollinear points determine a plane. There is a 1–1 correspondence between the points on this
plane and the affine combinations of these three points. Similarly, there is a 1–1 correspondence
between the points in the triangle determined by the these points and the convex combinations of the
points (see Fig. 2(d)). In particular, the point (1/3)p+(1/3)q+(1/3)r is the centroid of the triangle.

We will sometimes be sloppy, and write expressions of the following sort (which is clearly illegal).

r =
p+ q

2
.

We will allow this sort of abuse of notation provided that it is clear that there is a legal affine combi-
nation that underlies this operation.

To see whether you understand the notation, consider the following questions. Given three points
in the 3-space, what is the union of all their affine combinations? (Ans: the plane containing the 3
points.) What is the union of all their convex combinations? (Ans: The triangle defined by the three
points and its interior.)

Euclidean Geometry: In affine geometry we have provided no way to talk about angles or distances. Eu-
clidean geometry is an extension of affine geometry which includes one additional operation, called
the inner product.

The inner product is an operator that maps two vectors to a scalar. The product of ~u and ~v is denoted
commonly denoted (~u,~v). There are many ways of defining the inner product, but any legal definition
should satisfy the following requirements

Positiveness: (~u, ~u) ≥ 0 and (~u, ~u) = 0 if and only if ~u = ~0.

Symmetry: (~u,~v) = (~v, ~u).

Bilinearity: (~u,~v + ~w) = (~u,~v) + (~u, ~w), and (~u, α~v) = α(~u,~v). (Notice that the symmetric forms
follow by symmetry.)

Lecture 5 4 Fall 2013



CMSC 427 Dave Mount

See a book on linear algebra for more information. We will focus on a the most familiar inner product,
called the dot product. To define this, we will need to get our hands dirty with coordinates. Suppose
that the d-dimensional vector ~u is represented by the coordinate vector (u0, u1, . . . , ud−1). Then
define

~u · ~v =
d−1∑
i=0

uivi,

Note that inner (and hence dot) product is defined only for vectors, not for points.

Using the dot product we may define a number of concepts, which are not defined in regular affine
geometry (see Fig. 3). Note that these concepts generalize to all dimensions.

Length: of a vector ~v is defined to be ‖~v‖ =
√
~v · ~v.

Normalization: Given any nonzero vector ~v, define the normalization to be a vector of unit length
that points in the same direction as ~v, that is, ~v/‖~v‖. We will denote this by v̂.

Distance between points: dist(p, q) = ‖p− q‖.
Angle: between two nonzero vectors ~u and ~v (ranging from 0 to π) is

ang(~u,~v) = cos−1

(
~u · ~v
‖~u‖‖~v‖

)
= cos−1(û · v̂).

This is easy to derive from the law of cosines. Note that this does not provide us with a signed
angle. We cannot tell whether ~u is clockwise our counterclockwise relative to ~v. We will discuss
signed angles when we consider the cross-product.

Orthogonality: ~u and ~v are orthogonal (or perpendicular) if ~u · ~v = 0.

Orthogonal projection: Given a vector ~u and a nonzero vector ~v, it is often convenient to decompose
~u into the sum of two vectors ~u = ~u1 + ~u2, such that ~u1 is parallel to ~v and ~u2 is orthogonal to
~v.

~u1 =
(~u · ~v)
(~v · ~v)~v, ~u2 = ~u− ~u1.

(As an exercise, verify that ~u2 is orthogonal to ~v.) Note that we can ignore the denominator
if we know that ~v is already normalized to unit length. The vector ~u1 is called the orthogonal
projection of ~u onto ~v.

vθ

u

u

v

u1

u2

Angle between vectors Orthogonal projection and its complement

Fig. 3: The dot product and its uses.

Lecture 5 5 Fall 2013


