
CMSC 427 Dave Mount

CMSC 427: Lecture 6
More on Geometry and Geometric Programming

Bases, Vectors, and Coordinates: Last time we presented the basic elements of affine and Euclidean ge-
ometry: points, vectors, and operations such as affine combinations. However, as of yet we have no
mechanism for defining these objects. Today we consider the lower level issues of how these objects
are represented using coordinate frames and homogeneous coordinates.

The first question is how to represent points and vectors in affine space. We will begin by recalling
how to do this in linear algebra, and generalize from there. We know from linear algebra that if we
have 2-linearly independent vectors, ~u0 and ~u1 in 2-space, then we can represent any other vector in
2-space uniquely as a linear combination of these two vectors (see Fig. ??(a)):

~v = α0~u0 + α1~u1,

for some choice of scalars α0, α1. Thus, given any such vectors, we can use them to represent any
vector in terms of a triple of scalars (α0, α1). In general d linearly independent vectors in dimension d
is called a basis. The most convenient basis to work with consists of two vectors, each of unit length,
that are orthogonal to each other. Such a collection of vectors is said to be orthonormal. The standard
basis consisting of the x- and y-unit vectors is orthonormal (see Fig. ??(b)).

u0

u1

v

u0

u1

(a)

v = 2u0 + 3u1

x

y

(b)

Fig. 1: Bases and linear combinations in linear algebra (a) and the standard basis (b).

Note that we are using the term “vector” in two different senses here, one as a geometric entity and the
other as a sequence of numbers, given in the form of a row or column. The first is the object of interest
(i.e., the abstract data type, in computer science terminology), and the latter is a representation. As
is common in object oriented programming, we should “think” in terms of the abstract object, even
though in our programming we will have to get dirty and work with the representation itself.

Coordinate Frames and Coordinates: Now let us turn from linear algebra to affine geometry. To define
a coordinate frame for an affine space we would like to find some way to represent any object (point
or vector) as a sequence of scalars. Thus, it seems natural to generalize the notion of a basis in linear
algebra to define a basis in affine space. Note that free vectors alone are not enough to define a point
(since we cannot define a point by any combination of vector operations). To specify position, we
will designate an arbitrary a point, denoted o, to serve as the origin of our coordinate frame. Observe
that for any point p, p − o is just some vector ~v. Such a vector can be expressed uniquely as a linear
combination of basis vectors. Thus, given the origin point o and any set of basis vectors ~ui, any point
p can be expressed uniquely as a sum of o and some linear combination of the basis vectors:

p = α0~u0 + α1~u1 + α2~u2 + o,

Lecture 6 1 Fall 2013

CMSC 427 Dave Mount

for some sequence of scalars α0, α1, α2. This is how we will define a coordinate frame for affine
spaces. In general we have:

Definition: A coordinate frame for a d-dimensional affine space consists of a point, called the origin
(which we will denote o) of the frame, and a set of d linearly independent basis vectors.

In Fig. ?? we show a point p and vector −→w . We have also given two coordinate frames, F and G.
Observe that p and −→w can be expressed as functions of F and G as follows:

p = 3 · F.~e0 + 2 · F.~e1 + F.o
−→w = 2 · F.~e0 + 1 · F.~e1

p = 1 ·G.~e0 + 2 ·G.~e1 +G.o
−→w = −1 ·G.~e0 + 0 ·G.~e1

Notice that the position of −→w is immaterial, because in affine geometry vectors are free to float where
they like.

w
p

G.o

G.e1

G.e0
F.e0

F.e1

F.o

w
p

G.o

G.e1

G.e0
F.e0

F.e1

F.o

p[F] = (3, 2, 1) w[F] = (2, 1, 0) p[G] = (1, 2, 1) w[F] = (−1, 0, 0)

Fig. 2: Coordinate Frames.

Coordinate Axiom and Homogeneous Coordinates: Recall that our goal was to represent both points and
vectors as a list of scalar values. To put this on a more formal footing, we introduce the following
axiom.

Coordinate Axiom: For every point p in affine space, 0 · p = ~0, and 1 · p = p.

This is a violation of our rules for affine geometry, but it is allowed just to make the notation easier to
understand. Using this notation, we can now write the point and vector of the figure in the following
way.

p = 3 · F.~e0 + 2 · F.~e1 + 1 · F.o
−→w = 2 · F.~e0 + 1 · F.~e1 + 0 · F.o

Thus, relative to the coordinate frame F = 〈F.~e0, F.~e1, F.o〉, we can express p and −→w as coordinate
vectors relative to frame F as

p[F] =

3
2
1

 and −→w [F] =

2
1
0

 .

Lecture 6 2 Fall 2013

CMSC 427 Dave Mount

We will call these homogeneous coordinates relative to frame F . In some linear algebra conven-
tions, vectors are written as row vectors and some as column vectors. We will stick with OpenGL’s
conventions, of using column vectors, but we may be sloppy from time to time.

As we said before, the term “vector” has two meanings: one as a free vector in an affine space, and
now as a coordinate vector. Usually, it will be clear from context which meaning is intended.

In general, to represent points and vectors in d-space, we will use coordinate vectors of length d+ 1.
Points have a last coordinate of 1, and vectors have a last coordinate of 0. Some authors put the
homogenizing coordinate first rather than last. There are actually good reasons for doing this. But we
will stick with standard engineering conventions and place it last.

Properties of homogeneous coordinates: The choice of appending a 1 for points and a 0 for vectors may
seem to be a rather arbitrary choice. Why not just reverse them or use some other scalar values?
The reason is that this particular choice has a number of nice properties with respect to geometric
operations.

For example, consider two points p and q whose coordinate representations relative to some frame F
are p[F] = (3, 2, 1)T and q[F] = (5, 1, 1)T, respectively. Consider the vector

~v = p− q.

If we apply the difference rule that we defined last time for points, and then convert this vector into
it coordinates relative to frame F , we find that ~v[F] = (−2, 1, 0)T. Thus, to compute the coordinates
of p − q we simply take the component-wise difference of the coordinate vectors for p and q. The
1-components nicely cancel out, to give a vector result (see Fig. ??).

p

F.e0

F.e1

F.o

q
p− q

p[F] =

3
2
1

q[F] =

5
1
1

(p− q)[F] =

−2
1
0

Fig. 3: Coordinate arithmetic.

In general, a nice feature of this representation is the last coordinate behaves exactly as it should. Let
u and v be either points or vectors. After a number of operations of the forms u + v or u − v or αu
(when applied to the coordinates) we have:

• If the last coordinate is 1, then the result is a point.

• If the last coordinate is 0, then the result is a vector.

• Otherwise, this is not a legal affine operation.

This fact can be proved rigorously, but we won’t worry about doing so.

This suggests how one might do type checking for a coordinate-free geometry system. Points and
vectors are stored using a common base type, which simply consists of a 4-element array of scalars.
We allow the programmer to perform any combination of standard vector operations on coordinates.

Lecture 6 3 Fall 2013

CMSC 427 Dave Mount

Just prior to assignment, check that the last coordinate is either 0 or 1, appropriate to the type of vari-
able into which you are storing the result. This allows much more flexibility in creating expressions,
such as:

centroid← p+ q + r

3
,

which would otherwise fail type checking. (Unfortunately, this places the burden of checking on the
run-time system. One approach is to define the run-time system so that type checking can be turned
on and off. Leave it on when debugging and turn it off for the final version.)

Cross Product: The cross product is an important vector operation in 3-space. You are given two vectors
and you want to find a third vector that is orthogonal to these two. This is handy in constructing
coordinate frames with orthogonal bases. There is a nice operator in 3-space, which does this for us,
called the cross product.

The cross product is usually defined in standard linear 3-space (since it applies to vectors, not points).
So we will ignore the homogeneous coordinate here. Given two vectors in 3-space, ~u and ~v, their
cross product is defined as follows (see Fig. ??(a)):

~u× ~v =

uyvz − uzvy
uzvx − uxvz
uxvy − uyvx

 .

u

v

u× v

u

v

v × u = −(u× v)

(a) (b)

Fig. 4: Cross product.

A nice mnemonic device for remembering this formula, is to express it in terms of the following
symbolic determinant:

~u× ~v =

∣∣∣∣∣∣

~ex ~ey ~ez
ux uy uz
vx vy vz

∣∣∣∣∣∣
.

Here ~ex, ~ey, and ~ez are the three coordinate unit vectors for the standard basis. Note that the cross
product is only defined for a pair of free vectors and only in 3-space. Furthermore, we ignore the
homogeneous coordinate here. The cross product has the following important properties:

Skew symmetric: ~u× ~v = −(~v × ~u) (see Fig. ??(b)). It follows immediately that ~u× ~u = 0 (since
it is equal to its own negation).

Lecture 6 4 Fall 2013

CMSC 427 Dave Mount

Nonassociative: Unlike most other products that arise in algebra, the cross product is not associative.
That is

(~u× ~v)× ~w 6= ~u× (~v × ~w).

Bilinear: The cross product is linear in both arguments. For example:

~u× (α~v) = α(~u× ~v),
~u× (~v + ~w) = (~u× ~v) + (~u× ~w).

Perpendicular: If ~u and ~v are not linearly dependent, then ~u× ~v is perpendicular to ~u and ~v, and is
directed according the right-hand rule.

Angle and Area: The length of the cross product vector is related to the lengths of and angle between
the vectors. In particular:

|~u× ~v| = |u||v| sin θ,
where θ is the angle between ~u and ~v. The cross product is usually not used for computing angles
because the dot product can be used to compute the cosine of the angle (in any dimension) and
it can be computed more efficiently. This length is also equal to the area of the parallelogram
whose sides are given by ~u and ~v. This is often useful.

The cross product is commonly used in computer graphics for generating coordinate frames. Given
two basis vectors for a frame, it is useful to generate a third vector that is orthogonal to the first two.
The cross product does exactly this. It is also useful for generating surface normals. Given two tangent
vectors for a surface, the cross product generate a vector that is normal to the surface.

Orientation: Given two real numbers p and q, there are three possible ways they may be ordered: p < q,
p = q, or p > q. We may define an orientation function, which takes on the values +1, 0, or−1 in each
of these cases. That is, Or1(p, q) = sign(q − p), where sign(x) is either −1, 0, or +1 depending on
whether x is negative, zero, or positive, respectively. An interesting question is whether it is possible
to extend the notion of order to higher dimensions.

The answer is yes, but rather than comparing two points, in general we can define the orientation of
d+1 points in d-space. We define the orientation to be the sign of the determinant consisting of their
homogeneous coordinates (with the homogenizing coordinate given first). For example, in the plane
and 3-space the orientation of three points p, q, r is defined to be

Or2(p, q, r) = sign det

1 1 1
px qx rx
py qy ry

 , Or3(p, q, r, s) = sign det

1 1 1 1
px qx rx sx
py qy ry sy
pz qz rz sz

 .

What does orientation mean intuitively? The orientation of three points in the plane is +1 if the
triangle PQR is oriented counter-clockwise, −1 if clockwise, and 0 if all three points are collinear
(see Fig. ??). In 3-space, a positive orientation means that the points follow a right-handed screw, if
you visit the points in the order PQRS. A negative orientation means a left-handed screw and zero
orientation means that the points are coplanar. Note that the order of the arguments is significant. The
orientation of (p, q, r) is the negation of the orientation of (p, r, q). As with determinants, the swap of
any two elements reverses the sign of the orientation.

Lecture 6 5 Fall 2013

CMSC 427 Dave Mount

p q

r

q

p

r
r

q

p

p
q r

s

p
r q

s

Or(p, q, r) = +1

Or(p, q, r) = 0

Or(p, q, r) = −1

Or(p, q, r, s) = +1

Or(p, q, r, s) = −1

Fig. 5: Orientations in 2 and 3 dimensions.

You might ask why put the homogeneous coordinate first? The answer a mathematician would give
you is that is really where it should be in the first place. If you put it last, then positive oriented
things are “right-handed” in even dimensions and “left-handed” in odd dimensions. By putting it first,
positively oriented things are always right-handed in orientation, which is more elegant. Putting the
homogeneous coordinate last seems to be a convention that arose in engineering, and was adopted
later by graphics people.

The value of the determinant itself is the area of the parallelogram defined by the vectors q − p and
r−p, and thus this determinant is also handy for computing areas and volumes. Later we will discuss
other methods.

Lecture 6 6 Fall 2013

