CMSC427
Geometry and
Vectors: Affine Geometry

Vectors

- Direction and distance
- Describes
- Difference between points
- Speed, translation, axes
- Notation
- In bold a
- Angle brackets $\mathbf{a}=<x, y>$
- (Points in parens (x, y))
- Free vectors
- No anchor point
- Displacement, not location

Vector scaling

Multiplication by scalar sa

Vector addition and subtraction

Vector addition and subtraction

What is \mathbf{c} in terms of \mathbf{a} and \mathbf{b} ?

Vector addition and subtraction

What is \mathbf{c} in terms of \mathbf{a} and \mathbf{b} ?

$$
a+c=b
$$

Vector addition and subtraction

What is \mathbf{c} in terms of \mathbf{a} and \mathbf{b} ?

$$
a+c=b
$$

Coordinate vs. coordinate-free representation

Coordinate-free equation valid for 2D and 3D

Prefer when possible

Coordinate equation
$a=\langle 3,3>$
$b=\langle 4,2>$
$c=b-a=\langle 4,2\rangle-\langle 3,3\rangle=\langle 1,-1\rangle$

$C=\angle 1,-1\rangle$

Parametric line in coordinate-free vector format

What you should know

1. Notation for vectors $\langle x, y\rangle$ and pts (x, y)
2. Vector math: scaling, addition, subtraction
3. Coordinate vs coordinate-free formulas
