CMSC427
Geometry and
Vectors: Metrics and the Dot Product

Add distance metric to Affine space
Measure distances and angles
Inner product

$$
\begin{aligned}
& a \cdot b=a_{x} b_{x}+a_{y} b y \\
& a=\left\langle a_{x}, b_{y}\right\rangle \\
& b=\left\langle b_{x}, b_{y}\right\rangle
\end{aligned}
$$

maps fro rectors \rightarrow scalor

Vector magnitude

The magnitude (length) of a vector is

$$
\begin{aligned}
& |\mathbf{v}|^{2}=\frac{v_{x}^{2}+v_{y}^{2}}{|\mathbf{v}|=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{v \cdot v}}
\end{aligned}
$$

$$
|V|^{2}=V \cdot V
$$

A vector of length 1.0 is called a unit vector
To normalize a vector is to rescale it to unit length

$$
\mathrm{n}_{v}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\mid \checkmark \Gamma}{\sqrt{\vee, V}}
$$

Normal vectors represent direction and are used for: ilght direction, surriace normals, rotation axes

Dot product

- Inner product between two vectors
- Defined using coordinate-free cosine rule

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos (\theta)
$$

- Example:

$$
\theta=90^{\circ} \Rightarrow \cos (\theta)=0
$$

$$
\theta=0^{\circ} \Rightarrow \cos (\theta)=1
$$

$$
\begin{gathered}
\begin{array}{c}
\mathbf{a}=\langle 1,1\rangle \\
\mathbf{b}=\langle 1,0\rangle
\end{array}\left|\mid=\sqrt{1^{2}+1^{2}}=\sqrt{2}\right. \\
\left.\theta=\frac{\pi}{4} \quad \right\rvert\, \cos (\pi / 4)=1 / \sqrt{1^{2}+0^{2}}=1 \\
4142 * 1 * 0.70711=1 \\
\sqrt{2} * 1 * / \sqrt{2}=\times 1
\end{gathered}
$$

$$
\mathbf{a} \cdot \mathbf{b}=1.4142 * 1 * 0.70711=1
$$

Dot product - coordinate version

- Given

$$
\mathbf{a}=\left\langle\boldsymbol{a}_{x}, \boldsymbol{a}_{\boldsymbol{y}}\right\rangle \quad \mathbf{b}=\left\langle\boldsymbol{b}_{\boldsymbol{x}}, \boldsymbol{b}_{\boldsymbol{y}}\right\rangle
$$

- Then

$$
\mathrm{a} \cdot \mathrm{~b}=a_{x} b_{x}+a_{y} b_{y}
$$

- In n dimensions

$$
\mathrm{a} \cdot \mathrm{~b}=\sum_{i=1}^{n} a_{i} b_{i}
$$

$$
a_{x} b_{y}+a_{y} b_{y}+a_{z} b_{z}
$$

$$
n>3
$$

Dot product - coordinate version

- Given

$$
\mathbf{a}=\left\langle\boldsymbol{a}_{x}, \boldsymbol{a}_{\boldsymbol{y}}\right\rangle \quad \mathbf{b}=\left\langle\boldsymbol{b}_{\boldsymbol{x}}, \boldsymbol{b}_{\boldsymbol{y}}\right\rangle
$$

- Then

$$
\mathrm{a} \cdot \mathrm{~b}=a_{x} b_{x}+a_{y} b_{y}
$$

- Example revised:

$$
\begin{gathered}
\mathbf{a}=<1,1> \\
\mathbf{b}=<1,0> \\
\mathbf{a} \cdot \mathbf{b}=1 * 1+1 * 0=1
\end{gathered}
$$

Dot product: computing angle (and cosine)

- Given

$$
\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos (\theta)
$$

- We have

$$
\begin{aligned}
& \cos (\theta)=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \\
& \theta=\cos ^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right)
\end{aligned}
$$

- Example

$$
\begin{gathered}
\mathbf{a}=<1,1>, \mathbf{b}=<1,0> \\
\mathbf{a} \cdot \mathbf{b}=1 * 1+1 * 0=1 \\
|\mathbf{a}|=\mathbf{1 . 4 1 4 2},|\mathbf{b}|=\mathbf{1 . 0} \\
\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}=\frac{\mathbf{1}}{\mathbf{1 . 4 1 4 2}}=\mathbf{0 . 7 0 7 1 1} \\
\cos ^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}\right)=\mathbf{0 . 7 8 5 4 0}=\boldsymbol{\pi} / \mathbf{4}
\end{gathered}
$$

$$
\begin{aligned}
\frac{a \cdot b}{|a||b|} & =\frac{1}{\sqrt{2}(1)} \\
& =\frac{1}{\sqrt{2}}
\end{aligned}
$$

$\cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\pi / 4$

Dot product: testing perpendicularity

- Since

$$
\cos \left(90^{\circ}\right)=\cos \left(\frac{\pi}{2}\right)=\mathbf{0}
$$

- Then a perpendicular to b gives

$$
\mathrm{a} \perp \mathrm{~b} \Rightarrow \mathrm{a} \cdot \mathrm{~b}=0
$$

- Examples

$$
\begin{gathered}
\mathbf{a}=\langle 1,0>, \mathbf{b}=<0,1> \\
\mathbf{a} \cdot \mathbf{b}=1 * 0+1 * 0=0 \\
\mathbf{a}=\langle 1,1>, \mathbf{b}=<-1,1> \\
\mathbf{a} \cdot \mathbf{b}=1 *-1+1 * 1=0
\end{gathered}
$$

Pert vector and lines

- Given vector

$$
\left.\mathbf{v}=<v_{x}, v_{y}\right\rangle
$$

- The perp vector is

$$
=<-v_{y}, v_{x}>
$$

- So

$$
\mathbf{v} \cdot \mathbf{v}^{\perp}=0
$$

GL

What you should know after today

1. Vector magnitude and normalization
2. Dot products and cosine rule
3. Dot product, perpendicularity and perp vector
also cotinearity

