CMSC427
Geometry and Vectors:
Cross Product

Cross product

$a \times b$

- Read as "a cross b"
- $\mathbf{a} \mathbf{x} \mathbf{b}$ is a vector perpendicular to both \mathbf{a} and \mathbf{b}, in the direction defined by the right hand rule

Cross product

$a \times b$

- Read as "a cross b"
- $\mathbf{a x b}$ is a vector perpendicular to both \mathbf{a} and \mathbf{b}, in the direction defined by the right hand rule
- Vector a and b lie in the plane of the projection screen.
- Does ax b point towards you or away from you?
into the screen,

What about $\mathbf{b x a}$?

Cross product: normal to plane

- How compute normal vector to triangle P0, P1, P3?
- Assume up is out of page

$$
\begin{aligned}
n= & a \times b \\
= & \left(p 1-p_{3}\right) \\
& x\left(p 0-p_{3}\right)
\end{aligned}
$$

Cross product: normal to plane

- How compute normal vector to triangle P0, P1, P3?
- Assume up is out of page
- One answer: $\mathrm{n}=(\mathrm{P} 1-\mathrm{P} 3) \times(\mathrm{PO}-\mathrm{P} 1)$

Cross product: length of $a \times b$

- Parallelogram rule

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin (\theta)
$$

- Area of mesh triangle?
-When would cross product be zero?

$$
|\mathbf{a} \times \mathbf{b}|=0
$$

$$
\frac{|a \times b|}{2}
$$

Cross product: length of $a \times b$

- Parallelogram rule

$$
|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin (\theta)
$$

- Area of mesh triangle?
-When would cross product be zero?

$$
|\mathbf{a} \times \mathbf{b}|=0
$$

- Either abb parallel, or either vector degenerate

$$
\frac{a, b}{\theta=0} \Rightarrow c \times b=0
$$

Cross product: computing, vector approach

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{c}
\frac{a_{y} b_{z}-a_{z} b_{y}}{a_{z} b_{x}-a_{x} b_{z}} \\
a_{x} b_{y}-a_{y} b_{x}
\end{array}\right]
$$

Cross product: computing, matrix approach

- Determinant of

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{lll}
\frac{i}{a_{x}} & \frac{j}{a_{y}} & \frac{k}{a_{z}} \\
b_{x} & b_{y} & b_{z}
\end{array}\right]
$$

- Computed with 3 lower minors

$$
\mathbf{a} \times \mathbf{b}=i\left[\begin{array}{ll}
a_{y} & a_{z} \\
b_{y} & b_{z}
\end{array}\right]\left[\begin{array}{ll}
-j
\end{array}\right]\left[\begin{array}{ll}
a_{x} & a_{z} \\
b_{x} & b_{z}
\end{array}\right]+k\left[\begin{array}{ll}
a_{x} & a_{y} \\
b_{x} & b_{y}
\end{array}\right]
$$

- with

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=a d-c b
$$

- i, j, k are unit vectors in directions of x, y and $\mathrm{z} j$ axes
- $i=\langle 1,0,0\rangle \quad j=<0,1,0\rangle \quad k=\langle 0,0,1>$

Cross product: computing, matrix approach

- Determinant of

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
i & j & k \\
a_{x} & a_{y} & a_{z} \\
b_{x} & b_{y} & b_{z}
\end{array}\right]
$$

$$
a=\langle 1,1,1\rangle
$$

$$
a=\langle 0,1,0\rangle \jmath
$$

$$
b=\langle 2,1,1\rangle
$$

$$
b=\langle 0,0,1\rangle k
$$

$$
\begin{aligned}
& =i \not b 0-\jmath(-1)+k-1 \\
& =\langle 0,1,-1\rangle
\end{aligned}
$$

$$
=i * 1-j^{*} 0+k 0
$$

$$
=\langle 1,0,0\rangle i
$$

What you should know after today

1. Cross product, right hand rule and sine rule
2. Computing cross product with determinant
