CMSC427
Geometry and
Vectors: Affine and
Convex Combinations

Midpoint of triangle?

Midpoint of triangle?

Answer 1:

Midpoint of triangle?

Answer 2: Double interpolation (blending)

First interpolation: vector line P0 to P1

$$
\begin{aligned}
P & =t V+P 0 \\
& =t(P 1-P 0)+P 0 \\
& =t P 1+(1-t) P 0
\end{aligned}
$$

Midpoint at $\mathrm{t}=0.5$

$$
\begin{aligned}
m 0 & =0.5 P 1+(1-0.5) P 0 \\
& =0.5 P 1+0.5 P 0 \\
& =\frac{P 1+P 0}{2}
\end{aligned}
$$

Midpoint of triangle?

Answer 2: Double interpolation

Second interpolation: vector line mO to P 2

$$
\begin{aligned}
P & =s V^{\prime}+m 0 \\
& =s(P 2-m 0)+m 0 \\
& =s P 2+(1-s) m 0
\end{aligned}
$$

Midpoint at $s=1 / 3$

$$
\begin{aligned}
m= & \frac{1}{3} P 2+\left(1-\frac{1}{3}\right) m 0 \\
& =\frac{1}{3} P 2+\frac{2}{3} m 0
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{3} P 2+\frac{2}{3}(0.5 P 1+0.5 P 0) \\
& =\frac{P 2+P 1+P 0}{3}
\end{aligned}
$$

Generalizing: convex combinations of points

A convex combination of a set of points S is a linear combination such that the non-negative coefficients sum to 1

$$
C=\sum_{P \text { inS }} \alpha_{i} P_{i} \quad \text { with } \quad \sum \alpha_{i}=1 \quad \text { and } \quad 0 \leq \alpha_{i} \leq 1
$$

Generalizing: convex combinations of points

A convex combination of a set of points S is a linear combination such that the non-negative coefficients sum to 1

$$
C=\sum_{P \text { inS }} \alpha_{i} P_{i} \quad \text { with } \quad \sum \alpha_{i}=1 \quad \text { and } \quad 0 \leq \alpha_{i} \leq 1
$$

Is this equation for a line segment a convex combination?

$$
P=t P 1+(1-t) P 0
$$

Generalizing: convex combinations of points

A convex combination of a set of points S is a linear combination such that the non-negative coefficients sum to 1

$$
C=\sum_{P \text { inS }} \alpha_{i} P_{i} \quad \text { with } \quad \sum \alpha_{i}=1 \quad \text { and } \quad 0 \leq \alpha_{i} \leq 1
$$

Is this equation for a line segment a convex combination?

$$
P=t P 1+(1-t) P 0
$$

Yes. With t in $[0,1], \mathrm{t}$ and $(1-\mathrm{t})>=0$, and $\mathrm{t}+(1-\mathrm{t})=1$

Generalizing: convex combinations of points

A convex combination of a set of points S is a linear combination such that the non-negative coefficients sum to 1

$$
C=\sum_{P \text { inS }} \alpha_{i} P_{i} \quad \text { with } \quad \sum \alpha_{i}=1 \quad \text { and } \quad 0 \leq \alpha_{i} \leq 1
$$

Is this equation for a triangle a convex combination, assuming s and t are in [0,1]?

$$
\begin{aligned}
P & =s P 2+(1-s)(t P 1+(1-t) P 0) \\
& =s P 2+(1-s)(t P 1)+(1-s)(1-t) P 0) \\
& =s P 2+(t-s t) P 1+(1-s-t+s t) P 0
\end{aligned}
$$

Generalizing: convex combinations of points

A convex combination of a set of points S is a linear combination such that the non-negative coefficients sum to 1

$$
C=\sum_{P \text { inS }} \alpha_{i} P_{i} \quad \text { with } \quad \sum \alpha_{i}=1 \quad \text { and } \quad 0 \leq \alpha_{i} \leq 1
$$

For general polygon, all convex combinations of vertices yields convex hull

Linear, affine and convex combinations

Linear: No constraints on coefficients

$$
C=\sum_{P \text { in } S} \alpha_{i} P_{i}
$$

Affine: Coefficients sum to 1

$$
C=\sum_{P \text { inS }} \alpha_{i} P_{i} \text { with } \quad \sum \alpha_{i}=1
$$

Convex: \quad Coefficients sum to 1 , each in $[0,1]$

$$
C=\sum_{P \text { in } S} \alpha_{i} P_{i} \text { with } \quad \sum \alpha_{i}=1 \quad \text { and } \quad 0 \leq \alpha_{i} \leq 1
$$

Linear combinations of points vs. vectors

Point - point yields a

Vector - vector yields a ...

Point + vector yields a ...
Point + point yields a ...

Linear combinations of points vs. vectors

Point - point yields a vector
Vector - vector yields a ... vector
Point + vector yields a ... point
Point + point yields a ... ???? Not defined
Vectors are closed under addition and subtraction
Any linear combination valid
Points are not
Affine combination that sums to 0 yields vector Affine combination that sums to 1 yields point Convex combination yields point in convex hull

Moral: When programming w/ pts\&vtrs, know the output type

What you should know

1. Linear, affine and convex combinations
2. Triangle midpoint
