CMSC427
Geometry and Vectors: Homogenous Coordinates

Vectors

- Direction and distance
- Describe
- Difference between points
- Speed, translation, axes
- Notation
- In bold a
- Angle brackets $\mathbf{a}=<x, y>$
- Free vectors
- No anchor point
- Displacement, not location

Points

- Location
- Describe
- Position relative to origin
- Notation
- In normal font
- Parens $p=(x, y)$
- Not free

- Locked in position
- Not free to linearly combine

Points

- Location
- Describe
- Position relative to origin
- Notation
- In normal font
- Parens $p=(x, y)$
- Not free

- Locked in position
- Not free to linearly combine

Linear combination of vectors

- Vectors (2D) $\vec{v}=\alpha_{0} \vec{u}_{0}+\alpha_{1} \vec{u}_{1}$

(a)

(b)

Coordinate system

- Add fixed point as origin (3D)

$$
p=\alpha_{0} \vec{u}_{0}+\alpha_{1} \vec{u}_{1}+\alpha_{2} \vec{u}_{2}+o
$$

Homogenous coordinates

- Add third scalar to coordinates

$$
\begin{aligned}
& p_{[F]}=\left(\begin{array}{l}
3 \\
2 \\
1
\end{array}\right) \quad q_{[F]}=\left(\begin{array}{l}
5 \\
1 \\
1
\end{array}\right) \\
& (p-q)_{[F]}=\left(\begin{array}{r}
-2 \\
1 \\
0
\end{array}\right)
\end{aligned}
$$

Affine and convex combinations

Linear combinations of points vs. vectors

Point - point yields a

Vector - vector yields a ...

Point + vector yields a ...
Point + point yields a ...

Linear combinations of points vs. vectors

Point - point yields a vector
Vector - vector yields a ... vector
Point + vector yields a ... point
Point + point yields a ... ???? Not defined
Vectors are closed under addition and subtraction
Any linear combination valid
Points are not
Affine combination that sums to 0 yields vector Affine combination that sums to 1 yields point Convex combination yields point in convex hull

Moral: When programming w/ pts \& vtrs, know the output type

What you should know

1. Notation for vectors $\langle x, y\rangle$ and $p t s(x, y)$
2. Vectors and points are different data types
3. Coordinate system defined as vector plus origin
4. Use of fourth coordinate in homogeneous coordinates
5. How fourth coordinate value of 0 and 1 is preserved or created in convex and affine combinations
