CMSC427
Parametric Surfaces

Moving to 3D

- Polygonal meshes
- Set of standard shapes in Blender
- And how to create them

- And store them
- And draw them

Bilinear patch

- Blending of four 3D points
- Ruled surface
- Swept out by sequence of lines

Bilinear patch

- Blend simultaneously along two lines
- P01 = t(P1-P0) + P0<
- P23 = t(P2-P3) + P3 く
- Same t in [0,1]

Bilinear patch

- Blend simultaneously along two lines
- P01 = tP1 + (1-t)P0 <
- P23 = tP3 + (1-t)P2 <
- Same t in $[0,1]$
- Then blend between the two lines

- $P=s(23)+(1-s) P 01)$

Convex

- $P=s(t P 1+(1-t) P 0)+(1-s)(t P 3+(1-t) P 2)$ verify with roe Aficients

Bilinear patch

- Questions
- What order polynomial?
- Convex combination?
- What is drawn if t is constant?
- What is drawn if s is constant?
for $(t=0$ to 1 by inc)
for ($s=0$ to l bu inc)

- $P=s(t P 1+(1-t) P 0)+(1-s)(t P 3+(1-t) P 2)$

$$
\begin{aligned}
& \text { vertices } \\
& \text { not the topology }
\end{aligned}
$$

Bilinear patch

- Questions
- What order polynomial?
- Convex combination?
- What is drawn if t is constant?
- What is drawn if s is constant?

- $P=s(t P 1+(1-t) P 0)+(1-s)(t P 3+(1-t) P 2)$
- $P=s t P 1+s(1-t) P 0+(1-s) t P 3+(1-s)(1-t) P 2$

Circle with trig: review

Parametric cone: lathing

Parametric cylinder: lathing

$$
P(s, t)=\langle R \cos (2 \pi t), R \sin 12 \pi t), h s\rangle
$$

$$
t=[0,1]
$$

$$
\begin{aligned}
& x=R \cos (t) \\
& y=R \sin (2 \pi t)
\end{aligned}
$$

$$
z=h
$$

Creating polygonal meshes: summary

- Fixed shapes.
- Any shape based on idiosyncratic data, such as the exact shape of a stone, foot, sculpture, etc. All hard-coded, some from real world data collection
- Regular polyhedron
- Cubes, tetrahedrons, icosahedrons, dodecahedrons, ...
- Operations that create shapes
- Extrusion
- thing (surfaces of rotation) \rightarrow peramectuc
- Surface subdivision cylinder
- Parametric shapes (related to operations)
- Bilinear patches, quadrics, superellipses, etc.

