CMCS427 Notes

Example of determining normal vector for parametric curve: cylinder

Given parametric form for cylinder $p(u, v)=<R \cos (u), h * v, R \sin (u)>$
In this case, to simplify the derivatives the range of u is $[0,2 \pi]$ and the range of v is $[0,1]$. The y axis is the central axis of the cylinder. The tangent vector to the surface along u is the partial vector derivative wrt u:

$$
\frac{d p(u, v)}{d u}=<-R \sin (u), 0, R \cos (u)>
$$

The tangent vector to the surface along v is the partial vector derivative wrt v :

$$
\frac{d p(u, v)}{d v}=\langle 0, h, 0\rangle
$$

You can see that the partial derivative wrt v is a vertical line, while that wrt u is horizontal and tangent to the circle of the cylinder.

Taking the cross product of the two partial derivatives gives the normal direction.

$$
n=\frac{d p(u, v)}{d u} \times \frac{d p(u, v)}{d v}
$$

For the cylinder we have

$$
n=\operatorname{det}\left(\left[\begin{array}{ccc}
i & j & k \\
-R \sin (u) & 0 & R \cos (u) \\
0 & h & 0
\end{array}\right]\right)
$$

Which gives

$$
\begin{gathered}
n=i\left|\begin{array}{ccc}
0 & R \cos (u) \\
h & 0
\end{array}\right|-j\left|\begin{array}{cc}
-R \sin (u) & R \cos (u) \\
0 & 0
\end{array}\right|+k\left|\begin{array}{cc}
-R \sin (u) & 0 \\
0 & h
\end{array}\right| \\
n=<-h R \cos (u), 0,-h R \sin (u)>
\end{gathered}
$$

Normalizing n eliminates the hR scale term and we have.

$$
\hat{n}=<-\cos (u), 0,-\sin (u)>
$$

Notice that n points into the cylinder. We can negate it to get the outward facing normal. Whether you want $d p / d u x d p / d v$, or $d p / d v x d p / d u$, can depend on how you set up the parameterization.

Readings: http://math.etsu.edu/multicalc/prealpha/Chap3/Chap3-6/printversion.pdf https://www.khanacademy.org/math/multivariable-calculus/integrating-multivariable-functions/flux-in-3d-articles/a/unit-normal-vector-of-a-surface

