
CMCS427	Notes	
Example	of	creating	polygonal	mesh	for	parametric	curve:	cylinder	
	
Given	a	parametric	surface	for	a	cylinder	 𝑝 𝑢, 𝑣 =	< 𝑅𝑐𝑜𝑠 𝑢 , ℎ ∗ 𝑣, 𝑅𝑠𝑖𝑛 𝑢 >	
R	is	the	radius	of	the	cylinder,	h	the	height.	
	
Here	is	a	systematic	way	to	generate	a	polygon	mesh	from	the	parametric	surface	by	sampling	
at	regular	intervals.	
	
Step	1:	Define	two	dimensional	arrays	of	3D	points	and	vectors	(note	that	for	this	document	
points	and	vertices	are	the	same.)	The	constants	n	and	m	are	the	number	of	divisions	of	the	
mesh	in	the	directions	of	u	and	v,	respectively.	
	
	 Point3D	[n][m]	vertices	
	 Vector3D	[n][m]	normals		
	
Step	2:	Generate	the	vertices	and	normals	for	the	mesh	with	nested	loops.	
		
for (i = 0; i < n; i++)
for (j = 0; j < m; j++) {

 float u = i * 1/n * 2π // u in the range [0,2π]
 float v = j * 1/m // v in the range [0,1]

 float x = R*cos(u) // Change this lines
 float y = h*v // for a different surface
 float z = R*sin(u)

 float nx = cos(u) // Also change these
 float ny = 0
 float nz = sin(u)

 vertices[i,j] = new Point3d(x,y,z)
 normals[i,j] = new Vector3D(nx,ny,nz)

 }

Step	3:	Generate	the	vertex,	edge	and	face	lists	for	the	polygonal	mesh	from	the	vertices	and	
normal	arrays.	
	
We	could	keep	the	vertices	and	normals	in	the	2D	arrays	if	we’re	defining	our	own	polygonal	
mesh	data	structure,	but	OpenGL	and	our	indexed	polygonal	mesh	structure	from	lecture	both	
want	a	1D	array	of	vertices.	We	create	these	arrays	and	store	the	2D	data	in	row	major	order.	
	
	 Point3D	[n*m]	vertexList	
	 Vector3D	[n*m]	normalList	

Now	to	generate	the	face	list	we	look	at	four	adjacent	points	in	the	2D	array	and	take	them	in	
counterclockwise	order.	These	four	points	are	a	quad	(4	pt	face)	on	the	surface.	The	face	below	
would	be	given	by		
	
	 V0	=	vertices[1,1]	 	 The	new	face	would	include	V0,	V1,	V2,	V3	
	 V1	=	vertices[1,2]	 	 and	the	corresponding	normals	
	 V2	=	vertices[2,2]	
	 V3	=	vertices[2,1]	
	

	

If	the	vertices	are	in	a	1D	array,	then	the	indices	for	this	face	would	be		 i,	i+1,	i+m,	i+m+1	
	
An	edge	list,	if	wanted,	are	the	pairs	of	adjacent	vertices	in	horizontal	and	vertical	directions.	
	
If	you	want	to	generate	a	triangular	mesh	you	can	create	two	triangles	from	each	quad.	
	

	
	
What	happens	at	the	edges	of	the	arrays	depends	on	the	nature	of	the	surface.	A	cylinder	joins	
the	left	and	right	edges,	and	leaves	the	top	and	bottom	open.	A	cone	is	similar,	but	joins	the	
vertices	at	the	top	in	the	apex.	A	sphere	joins	the	top	and	bottom	at	the	north	and	south	poles.	
A	torus	joins	the	left	and	right	edges,	and	the	top	and	bottom.	A	bilinear	patch	leaves	all	four	
sides	as	a	separate	boundaries.	

i= 0 1 2 3 4
u= u0 u1 u2 u3 u4j= v=

0

1

2

3

4

v0

v1

v2

v3

v4

face
V0

V1 V2

V=<x,y,z>V3

i= 0 1 2 3 4
u= u0 u1 u2 u3 u4j= v=

0

1

2

3

4

v0

v1

v2

v3

v4

V0

V1 V2

V=<x,y,z>V3

